Higher dimensional generalizations of twistor spaces - Archive ouverte HAL
Article Dans Une Revue J.Geom.Phys. Année : 2017

Higher dimensional generalizations of twistor spaces

Hai Lin
Tao Zheng
  • Fonction : Auteur

Résumé

We construct a generalization of twistor spaces of hypercomplex manifolds and hyper-Kähler manifolds M , by generalizing the twistor P1 to a more general complex manifold Q . The resulting manifold X is complex if and only if Q admits a holomorphic map to P1 . We make branched double covers of these manifolds. Some class of these branched double covers can give rise to non-Kähler Calabi–Yau manifolds. We show that these manifolds X and their branched double covers are non-Kähler. In the cases that Q is a balanced manifold, the resulting manifold X and its special branched double cover have balanced Hermitian metrics.

Dates et versions

hal-01554758 , version 1 (03-07-2017)

Identifiants

Citer

Hai Lin, Tao Zheng. Higher dimensional generalizations of twistor spaces. J.Geom.Phys., 2017, 114, pp.492-505. ⟨10.1016/j.geomphys.2016.12.018⟩. ⟨hal-01554758⟩
60 Consultations
0 Téléchargements

Altmetric

Partager

More