Nonexistence of small, odd breathers for a class of nonlinear wave equations - Archive ouverte HAL
Article Dans Une Revue Lett.Math.Phys. Année : 2017

Nonexistence of small, odd breathers for a class of nonlinear wave equations

Michał Kowalczyk
  • Fonction : Auteur
Yvan Martel
Claudio Muñoz
  • Fonction : Auteur

Résumé

In this note, we show that for a large class of nonlinear wave equations with odd nonlinearities, any globally defined odd solution which is small in the energy space decays to 0 in the local energy norm. In particular, this result shows nonexistence of small, odd breathers for some classical nonlinear Klein Gordon equations, such as the sine-Gordon equation and $\phi ^4$ and $\phi ^6$ models. It also partially answers a question of Soffer and Weinstein (Invent Math 136(1): 9–74, p 19 1999) about nonexistence of breathers for the cubic NLKG in dimension one.

Dates et versions

hal-01554682 , version 1 (03-07-2017)

Identifiants

Citer

Michał Kowalczyk, Yvan Martel, Claudio Muñoz. Nonexistence of small, odd breathers for a class of nonlinear wave equations. Lett.Math.Phys., 2017, 107 (5), pp.921-931. ⟨10.1007/s11005-016-0930-y⟩. ⟨hal-01554682⟩
102 Consultations
0 Téléchargements

Altmetric

Partager

More