Hamiltonian Formulation of the Conservative Self-Force Dynamics in the Kerr Geometry - Archive ouverte HAL
Article Dans Une Revue Classical and Quantum Gravity Année : 2017

Hamiltonian Formulation of the Conservative Self-Force Dynamics in the Kerr Geometry

Ryuichi Fujita
  • Fonction : Auteur
Soichiro Isoyama
  • Fonction : Auteur
Hiroyuki Nakano
  • Fonction : Auteur
Norichika Sago
  • Fonction : Auteur
Takahiro Tanaka
  • Fonction : Auteur

Résumé

We formulate a Hamiltonian description of the orbital motion of a point particle in Kerr spacetime for generic (eccentric, inclined) orbits, which accounts for the effects of the conservative part of the gravitational self-force. This formulation relies on a description of the particle’s motion as geodesic in a certain smooth effective spacetime, in terms of (generalized) action-angle variables. Clarifying the role played by the gauge freedom in the Hamiltonian dynamics, we extract the gauge-invariant information contained in the conservative self-force. We also propose a possible gauge choice for which the orbital dynamics can be described by an effective Hamiltonian, written solely in terms of the action variables. As an application of our Hamiltonian formulation in this gauge, we derive the conservative self-force correction to the orbital frequencies of Kerr innermost stable spherical (inclined or circular) orbits. This gauge choice also allows us to establish a ‘first law of mechanics’ for black-hole-particle binary systems, at leading order beyond the test-mass approximation.

Dates et versions

hal-01554360 , version 1 (03-07-2017)

Identifiants

Citer

Ryuichi Fujita, Soichiro Isoyama, Alexandre Le Tiec, Hiroyuki Nakano, Norichika Sago, et al.. Hamiltonian Formulation of the Conservative Self-Force Dynamics in the Kerr Geometry. Classical and Quantum Gravity, 2017, 34 (13), pp.134001. ⟨10.1088/1361-6382/aa7342⟩. ⟨hal-01554360⟩
69 Consultations
0 Téléchargements

Altmetric

Partager

More