Radio-frequency capacitively coupled plasmas in hydrogen excited by tailored voltage waveforms: comparison of simulations with experiments - Archive ouverte HAL
Article Dans Une Revue Plasma Sources Science and Technology Année : 2014

Radio-frequency capacitively coupled plasmas in hydrogen excited by tailored voltage waveforms: comparison of simulations with experiments

P. Diomede
  • Fonction : Auteur
D. J. Economou
  • Fonction : Auteur
Jean-Paul Booth
S. Longo
  • Fonction : Auteur

Résumé

A combined computational-experimental study was performed of a geometrically symmetric capacitively coupled plasma in hydrogen sustained by tailored voltage waveforms consisting of the sum of up to three harmonics. Predictions of a particle-in-cell with Monte Carlo collisions/fluid hybrid model were in reasonably good agreement compared to data from an array of experimental plasma diagnostics. The plasma was electrically asymmetric, with a dc self-bias developed, for all but a sinusoidal voltage waveform. Hydrogen ions (H ,H 2,H 3) bombarding the electrodes exhibited different ion flux-distribution functions due to their different masses and collisionality in the sheath. Plasma density, ion flux and absolute value of the dc self-bias all increased with increasing the number of harmonics. The energy of ions bombarding the substrate electrode may be controlled by switching the applied voltage waveform from (positive) peaks to (negative) valleys.
Fichier non déposé

Dates et versions

hal-01549381 , version 1 (28-06-2017)

Identifiants

Citer

P. Diomede, D. J. Economou, Trevor Lafleur, Jean-Paul Booth, S. Longo. Radio-frequency capacitively coupled plasmas in hydrogen excited by tailored voltage waveforms: comparison of simulations with experiments. Plasma Sources Science and Technology, 2014, 23 (6), pp.065049. ⟨10.1088/0963-0252/23/6/065049⟩. ⟨hal-01549381⟩
95 Consultations
0 Téléchargements

Altmetric

Partager

More