Isopropanol removal using MnXOY packed bed non-thermal plasma reactor: Comparison between continuous treatment and sequential sorption/regeneration
Résumé
MnXOY coated glass beads packed bed non-thermal plasma (NTP) reactor has been designed and operated for isopropanol (IPA) removal close to indoor air conditions. The IPA removal efficiency of continuous NTP treatment is compared with the sequential approach, i.e. adsorption of IPA on MnXOY and subsequent regeneration of the saturated MnXOY surface by non-thermal plasma. The comparison between both approaches has been achieved with the same packed bed reactor and model VOC under equivalent indoor air conditions. Firstly, based on carbon mass balance calculations, the continuous treatment has shown better performances from an IPA abatement point of view, as well as from a mineralization point of view. However, the characterization of ppb level side-products evidenced that the continuous treatment leads to a more significant release of organic side products which may impact indoor air quality. Secondly, both processes have been compared in terms of energetic costs regarding (i) IPA removal, and (ii) CO2 forma- tion. Interestingly, it is evidenced that, to treat the same amount of IPA, the sequential approach requires 14.5 times less energy than the continuous NTP treatment process. Similarly, to produce the same amount of CO2, the sequential approach consumes 10 times less energy. This comparison evidences the interest of adsorption combined with subsequent non-thermal plasma regeneration for indoor air effluent treatment.