Improving full-field identification using progressive model enrichments - Archive ouverte HAL
Article Dans Une Revue International Journal of Solids and Structures Année : 2017

Improving full-field identification using progressive model enrichments

Résumé

Full-field identification methods such as finite element model updating or integrated digital image correlation minimize the gap between an experiment and a simulation by iterative schemes. Within the algorithms residual fields and sensitivity fields are used to achieve identification. This paper discusses how these same fields can be used to assess the quality of the identification and guide toward successive enrichment of the constitutive model to progressively reduce the experiment-model gap. A cyclic experiment on a dog-bone sample made of aluminum alloy is used as an example to identify the parameters of an elastoplastic model with exponential hardening and anisotropic yielding. Published by Elsevier Ltd.
Fichier principal
Vignette du fichier
IJSS2017b-ccsd.pdf (2.16 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01549237 , version 1 (28-06-2017)

Identifiants

Citer

Jan Neggers, Florent Mathieu, François Hild, Stéphane Roux, Nicolas Swiergiel. Improving full-field identification using progressive model enrichments. International Journal of Solids and Structures, 2017, 118, pp.213 - 223. ⟨10.1016/j.ijsolstr.2017.03.013⟩. ⟨hal-01549237⟩
138 Consultations
173 Téléchargements

Altmetric

Partager

More