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Abstract

Full-field identification methods such as finite element model updating or inte-

grated digital image correlation minimize the gap between an experiment and

a simulation by iterative schemes. Within the algorithms residual fields and

sensitivity fields are used to achieve identification. This paper discusses how

these same fields can be used to assess the quality of the identification and

guide toward successive enrichment of the constitutive model to progressively

reduce the experiment-model gap. A cyclic experiment on a dog-bone sample

made of aluminum alloy is used as an example to identify the parameters of an

elasto-plastic model with exponential hardening and anisotropic yielding.

Keywords: Anisotropic plasticity, Damage, Digital image correlation,

Full-Field measurements, Identification

1. Introduction

There is a constant need for calibrating the parameters of material mod-

els. Most modern engineering materials are created from mixtures of multiple

materials using highly specific micro-architectures [1]. This allows them to be

optimized to a high extent. The interest in these materials is often beyond their5

linear elastic regime [2].
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The mechanics of materials community has been prolific in providing an

abundance of interesting nonlinear material models, each describing the material

behavior with large sets of parameters [3]. At this moment, the experimental

methods have reached a data density level rich enough to identify these multi-10

parameter nonlinear models. The main source for the increase in data density

comes from the maturity of full-field measurement methods such as Digital

Image Correlation (DIC [4, 5]).

The classical approach to parameter calibration is to optimize the experi-

ment such that it is only sensitive to a limited number of material parameters [6].15

For instance, uniaxial experiments gained popularity due to their near homoge-

neous stress state over the entire sample, which allow for estimations of stress

and strain from the displacements and forces. Full-field methods enable one to

deviate from this path since they capture the heterogeneous kinematics of the

experiment [7, 8, 9]. In the latter each material point experiences a different20

stress/strain history and hence it may provide a different clue about the material

model during a single experiment.

The most common identification method is referred to as Finite Element

Model Updating (FEMU [10, 11, 12, 13, 14, 15]). In FEMU the gap between the

experiment and simulations of the same experiment is minimized by optimizing25

(i.e. updating) the unknown model parameters. Within this paper a similar

method is applied, which is referred to as Integrated-DIC [16, 17, 18, 19, 20, 21].

The latter optimizes the gap between simulation and experiment directly on

the captured images by integrating the identification step in the DIC algorithm.

However, the differences between the two methods are not essential for the30

discussion in this paper. The interested reader is referred to Ref. [20] for more

details on this last point.

Full-field identification methods such as FEMU and Integrated-DIC use the

gap between the experiment and simulations with different metrics, which can

be made totally consistent [20]. This gap, or residual, is not only required35

inside the respective algorithms, it also provides means for visualizing where

it is the largest in space and time. In this paper the residuals will be used
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to progressively enrich the material model, thereby reducing the gap and thus

improve the identification quality.

The full-field identification methods typically rely on sensitivity fields as part40

of the tangent operator in the iterative optimization algorithm [22, 23, 24]. As

the name suggests they indicate the sensitivity of a certain parameter on space

and time data of interest. Conversely, they show how the simulation will change

with a small variation in a given parameter. In this paper it will be shown that

these fields are invaluable to diagnose which part of the model is missing or45

wrong. The comparison between the sensitivity fields and the residual fields

provides guidance on how to enrich the model and reduce their level.

Besides FEMU and Integrated-DIC there are other inverse identification

methods (see e.g. [13] for an overview). This article focuses on two of these

methods because both utilize the sensitivity fields in the same way. However, the50

concepts discussed herein may be equally valid for other identification methods

such as the equilibrium gap method [25] or the virtual fields method [26, 27]. It

is always possible to perform a simulation of the experiment with the obtained

parameters of any identification method and compute the residual between the

experiment and the simulation. These residuals are an accessible (though often55

omitted) tool for analyzing the quality of identification.

In Section 2, Integrated-DIC is briefly detailed in order to introduce concepts

such as sensitivity fields and residual fields. Additionally, the tensile experiment

on a dog-bone sample made of aluminum alloy 2219 is introduced and the finite

element simulations are described. Section 3 discusses five identification cases60

using various constitutive models to analyze how successive enrichments can be

used to assess identification quality. The five cases are discussed in parallel such

that the differences between each can be discussed side-by-side. This parallel

structure is beneficial for the discussion of the results. However, it is less optimal

when introducing the five cases, which are inspired from each other based on65

results that will only be presented later on.
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2. Identification Framework

The chosen identification method is Integrated-DIC (I-DIC). It integrates

identification in digital image correlation by choosing the static and kinematic

basis functions such that the degrees of freedom are directly the to-be-identified70

parameters. The interested reader is referred to the literature for additional

details [28, 18, 20, 21]. However, the method is summarized to define certain

aspects used to analyze the identification results. A related method is FEMU.

In this method the distance between simulated and measured quantities, such

as displacement [24] and/or force [10, 24], are minimized by iteratively updating75

the finite element model parameters. The key difference between FEMU and

I-DIC is that FEMU minimizes the gap based on a measured displacement field

and I-DIC minimizes the image residual directly using the model to drive the

kinematics. This integration has advantages for cases where a fine mesh is

required to accurately capture for instance complex sample geometry [17] or80

strain concentrations [29]. The displacement uncertainty of non-integrated DIC

is inversely related to the element (or subset) size [30], where for I-DIC this is not

the case since the degrees of freedom are not the nodal or subset displacements

but the unknown material parameters. For cases where the smallest element

size is not critical for DIC it can be shown that the two methods are equivalent,85

provided that the noise level is small and an appropriate metric is chosen in

FEMU [20, 31].

2.1. Integrated DIC

In Integrated-DIC the objective is to seek the optimum set of parameters

{p} = {p1, . . . , pn} that minimize the distance between a reference image f and

a series of deformed images gτ for a given region of interest and a series of time

steps τ . The deformed images are back transformed using a displacement field

uτ that depends on the defined parameter set {p}. The objective is to minimize
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the cost function,

η2I ({p}) =
1

2NτNkγ2I

Nτ∑
τ

Nk∑
k

(
fk − g̃kτ ({p})

)2
, (1)

where, fk denotes the gray value of a pixel at location xk in the image of f and

g̃kτ = gτ
(
xk + uk({p}, τ)

)
denotes the corresponding interpolated gray values90

at the deformed locations in the image g for each time step τ . The number of

pixels within the region of interest is Nk and the number of time steps is Nτ .

The cost function is scaled with the gray level standard uncertainty of the image

sensor γI and the number of measurements such that the expectation value of

this cost function approaches unity when converged if only random acquisition95

noise were present.

For the experiments discussed within this paper, the force on the grips of

the tensile machine was also captured during the experiments. To include these

data in the identification method a second cost function is defined,

η2F ({p}) =
1

Nτγ2F

Nτ∑
τ

(
F exp
τ − Fτ ({p})

)2
, (2)

where, F exp
τ is the measured force for time step τ and Fτ the corresponding

simulated force. Again, this cost function is scaled with the standard uncertainty

of the force sensor γF such that its expectation value approaches unity when

converged in the presence of only acquisition noise.100

Since the identified parameters must hold for both cost functions, they are

combined to a single cost function,

η2 =
Nk

Nk + 1
η2I +

1

Nk + 1
η2F . (3)

This extensive addition of the two cost functions is interesting as it provides the

optimal cost function for the parameters in the sense that the resulting estimate

will have the smallest variance provided the solution has converged and that the

only uncertainty is acquisition noise.

The cost function (3) is minimized using Gauss-Newton’s iterative routine

that starts with an initial guess for {p0} and computes the iterative updates at
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iteration l to the degrees of freedom {p}(l+1) = {p}l + {δp},

[M ]{δp} = {b}, (4)(
[MI ] + [MF ]

)
{δp} = {bI}+ {bF }, (5)

where, [M ] is the Hessian matrix and {b} the right hand member. Typically,

they are decomposed their respective counter parts for each individual cost

function, namely, [MI ], [MF ], {bI} and {bF }. They are defined as (for details

see [20, 21]),

MIij =
1

2NτNkγ2I

Nτ∑
τ

Nk∑
k

ϕ
Ikτi
· ∇fk∇fk · ϕIkτj , (6)

bIi =
1

2NτNkγ2I

Nτ∑
τ

Nk∑
k

ϕ
Ikτi
· ∇fk

(
fk − g̃kτ ({p})

)
, (7)

MFij =
1

Nτγ2F

Nτ∑
τ

SFτi SFτj , (8)

bFi =
1

Nτγ2F

Nτ∑
τ

SFτi

(
F exp
τ − Fτ ({p})

)
, (9)

where, ∇f is the image gradient and [ϕI ] and [SF ] are projection matrices that

project the data space onto the parameter space. The image projection matrix

is decomposed again using the FE shape-functions,

ϕ
Ikτi

=
∂ukτ
∂pi

≈
Na∑
j

∂ukτ
∂ajτ

∂ajτ
∂pi

=

Na∑
j

ψ
kjτ

SIjτi, (10)

where {a} are the nodal degrees of freedom of the FE mesh, Na the number of

degrees of freedom and [ψ] the corresponding FE shape-functions. The decom-

position of [ϕ
I
] into FE shape-functions and the image sensitivity matrix [SI ]

is a common choice [19, 20]. It allows the shape-functions to be reused, which

are also applied in a non-integrated DIC procedure and in the FE simulations

that are run during the identification process. The image and force sensitivity

matrices are then computed using finite differences,

SIijτ ≈
âijτ − ajτ

εpi
, (11)

SFiτ ≈
F̂iτ − Fτ
εpi

, (12)
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where {a} and {F} are the respective nodal displacements and boundary forces105

for the current set of parameters while {â}i and {F̂}i are the corresponding

values for a calculation with one of the parameters pi perturbed with a small

factor, p̂i = pi + εpi. For all the results reported in this paper the perturbation

factor is set to ε = 0.01.

The sensitivity matrices presented in Equations (11) and (12) naturally fol-110

low from the derivation of Newton methods, and are a requirement for the

optimization algorithm. However, they are also invaluable for analyzing sen-

sitivities. They visually indicate where in space and time the experiment is

sensitive to certain parameters, and will be shown and discussed later on. Be-

cause they can be computed before performing an experiment, they can be used115

to optimize the experiment [32, 33].

In the case of insignificant or limited sensitivity, Equation (4) is ill-conditioned.

This difficulty is circumvented by using a Tikhonov-type regularization [34, 35],

where the linear system of equations is modified to,(
[M ] + α[I]

)
{δp} = {b}+ α

(
{pref − {p}}

)
, (13)

where, {pref} is a set of reference parameters obtained from other sources such

as other experiments and or expert knowledge. [I] is the unity matrix and α the

regularization strength, which is set to 10−5λ, where λ is the largest eigenvalue

of [M ]. The consequence of this regularization is that insensitive parameters120

will tend to the reference levels instead of the otherwise erratic identification

behavior. The chosen α parameter is set sufficiently small such that parameters

with reasonable sensitivity are determined by the Integrated-DIC procedure

based on the experimental data. It is always possible to set α = 0 and return to

the original un-regularized system to analyze the influence of this regularization.125

The remaining ingredients in this identification algorithm are the boundary

conditions that are applied to the simulations, both when computing the image

residual in Equation (7) and when computing the sensitivity matrices (Equa-

tions (11)-(12)). There are different options each with their own merits. For

the cases discussed in this paper a method was adopted that applies the dis-130
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placement boundary conditions measured by a non-integrated FE-based DIC

methods that uses the same mesh. This has the advantage of instantaneously

aligning and synchronizing the measured and simulated data sets. Additionally,

this method limits the simulation domain to the part that is visible within the

field of view thereby reducing some computational costs. It has the disadvan-135

tage that these measured boundary conditions contain measurement uncertainty

that is directly transferred to the identification algorithm.

Figure 1: Integrated-DIC represented as a flow-chart. All blue items (with the rounded

corners) are constants and are only computed before identification. The red items constitute

the Integrated-DIC routine

Figure 1 shows the most important ingredients of the Integrated-DIC rou-

tine. To summarize, the method starts with a regular DIC routine to measure

the boundary conditions aBC, which together with an initial guess of the param-140

eters, are the inputs to the FE simulations. From the simulations the sensitivity

fields and the simulated versions of the measurement data are computed. All
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measured and simulated data concentrate in Equation (4) where a single sys-

tem of equations is formulated. The solution to this small system of equations is

trivial and provides the update to the unknowns, which are the material param-145

eters. The process is repeated until convergence which for the discussed cases

is reached when the relative update norm is less than 10−3.

2.2. Experiment

The example experiment chosen as the integral part of the discussion is a

relatively simple dog-bone sample made of AA2219 as shown in Figure 2(a).150

The presented Integrated-DIC method can easily handle more complex geome-

tries and inhomogeneous stress states [17, 29]. However, discussion of the gap

between identification and measurement is equally important for classical iden-

tification methods. For that reason, a case was chosen that may seem trivial

but, as will be discussed throughout the paper, contains nontrivial aspects.155

The sample is 2 mm thick and 100 mm long, the width at the narrowest

section is 10 mm, with the dog-bone radius of each side of the sample equal to

120 mm. The sample is loaded in a servo-hydraulic tension/compression testing

machine equipped with a 50 kN load-cell. The top grip of the tensile machine

is stationary while the bottom grip is driven at constant velocity of 0.01 mm/s160

to specific load levels (i.e. [1.8, 6.0, 8.5, 9.1, 9.3, 9.5, 9.6] kN). When a specific

load level is reached the sample is unloaded to 0.1 kN upon which the next

load cycle starts. At the end of the 7th cycle the sample has not failed yet.

Failure will occur in the 10th cycle, at a failure strain of approximately 8% and

a maximum load of 9.7 kN. In the last three cycles, localization starts to set165

in, resulting in a behavior that is too challenging for the applied constitutive

models. The application of more sophisticated models is possible and interesting

but considered beyond the scope of this paper.

A single Manta G-223 camera equipped with a telecentric lens of magni-

fication ×0.125 captured one side of the speckle-painted sample at 5 second170

intervals. This acquisition rate resulted in 152 images of which the first is in the

unloaded configuration resulting in 151 loaded time steps up to the maximum
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load of the 7th cycle. The recorded images are of size 1120 × 2160 px, where

each pixel captures the intensity of 26 × 26 µm2 of the sample area digitized

with 16 bits. The dynamic range, which is defined as the difference between the175

brightest and the darkest pixel, is 63,589 gray levels.

(a) (b) (c)

Figure 2: (a) Reference image f and mesh applied for both DIC and I-DIC purposes. (b)

Measured displacement field obtained by DIC per component (i.e. u = uxex +uyey) is shown

for the last time step (right) and for one cross-section along time (left), the cross-section

location is indicated with the dashed line (x = 165 px). The measured force is also shown

below the displacement field. (c) Corresponding strain field using the same space and time

visualization layout

The sample deformation that occurred during the experiment is summarized

in Figure 2(b) showing the displacement and Figure 2(c) shows the logarithmic

strain. A small explanation on the graphical layout of these figures may be

required. It is a challenge to efficiently format the figures for print such that180

the most important information is available at the smallest expense of page

real-estate. Therefore, a specific space-time layout is designed, which will be
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used consistently throughout the paper. For each vector or tensor component,

the full-field results are shown for the final time step (on the right), while the

space-time results are shown for one column of pixels, i.e. x = 165 px (on the185

left). Whenever required the corresponding measured force/time plot is drawn

below, sharing the same time abscissa as the space-time figures.

2.3. Measurement Uncertainty

Besides the 152 image captured during the experiment an additional 20

images were acquired before the experiment. During this capture the sample

was mounted in the tensile testing machine that controlled the force level around

zero. These 20 images should have zero displacement and zero force and thus

allow for an assessment of the measurement uncertainty. From these images,

the gray level uncertainty γI , the displacement uncertainty γU and the force

uncertainty γF are estimated,

γI ≈ 652 GV,

γU ≈ 0.017 px ≈ 0.44 µm,

γF ≈ 5 N.

(14)

In the adopted Integrated-DIC algorithm only γI and γF are used to scale the

cost functions. The application of γI assumes that the displacement uncertainty

can be propagated using the DIC Hessian [30]. If this assumption is true, the

following relation should hold,

γai =
γI
√

6

GLi
(15)

γ̂U = 〈γa〉 ≈ 0.0058 px ≈ 1

3
γU , (16)

where G is the mean field average of image gradient and Li is the element length

for each node i, which is estimated as the square root of the area of the con-190

nected elements. There is a factor of three between the measured displacement

uncertainty and the theoretical displacement uncertainty. There can be a num-

ber of reasons for this, not limited to, cross-pixel correlation, speckle quality

and degradation, and sub-pixel interpolation errors. To remedy this gap, an
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effective gray level uncertainty is computed γ̂I ≈ 3γI = 1911 gray values, which195

is that ultimately used in Equation (3).

2.4. Finite Element Simulations

The Integrated-DIC routine is part of the Correli 3.0 framework, which is in

continuous development at LMT [36]. The Integrated-DIC implementation con-

figures the FE simulations with the correct parameters and subsequently calls200

the commercial code Abaqus implicit1 to perform the simulations. The latter

ones return the displacement field and reaction forces to the I-DIC implementa-

tion, which uses these data to compute the residuals and sensitivity fields, and

then prepares for the next identification iteration (see Figure 1).

Part of the simulations are the displacement boundary conditions on each205

end of the sample. The displacements measured by DIC of the 3rd row of

nodes from each end inward are used, which are indicated with circular markers

in Figure 2(a). The far edge nodes are not used because the images have a

significant reduction in intensity due to vignetting at the top and bottom image

edges. Moreover, the edge nodes of FE-based DIC routines are always more210

sensitive to noise due to their reduced connectivity [30]. To further reduce

the impact of measurement noise in the simulations, the measured boundary

conditions are smoothened using a cubic polynomial fit along the line of nodes

for each time step.

Figure 3: 2D mesh as used in the DIC analyses and 3D mesh as used in FE simulations

1Abaqus Standard: Dassault Systèmes Simulia [37]
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The FE simulations are performed in 3D, using an extruded version of the215

DIC mesh as shown in Figure 3. The in-plane boundary conditions are ap-

plied identically to the front and the back sample surfaces. The out-of-plane

boundary conditions are set to zero only for the front surface. Note that in the

experiment the sample is clamped roughly 3 cm farther outward. The sample

has an acceptable thickness to length ratio to be close to plane-stress. There-220

fore, it could be modeled in 2D instead of 3D. This hypothesis was tested and

significant differences in the identified parameters between the 2D plane-stress

and a 3D case were detected, especially for the Poisson’s ratio. Modeling the

sample with multiple elements over the thickness was also tested but proved not

to significantly change the identification result while significantly increasing the225

computation time.

3. Identification Results

At the core of this paper is the discussion about the differences between

identification cases and how the residuals of one case can guide choices made in

the following one. In this section five cases are discussed, each extending on the230

previous one. Although the cases depend chronologically upon each other, they

will be discussed in parallel such that the results can be compared side by side.

Consequently, the five cases will be introduced in parallel without the support

of their data, causing some choices to seem unsupported at first sight.

3.1. Identification Cases235

The five identification cases are defined as in Table 1. The first two cases

(i.e. C1 and C2) allow for a direct comparison between classical (e.g. a stress-

strain fit) and full-field (e.g. I-DIC) identification approaches. The Cases C2 to

C4 progressively include more material parameters, and thus more freedom for240

the optimization method to reduce the residuals. Case C5 reduces the number

of degrees of freedom by removing the Voce part of the hardening model and
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identifying only the Ludwik hardening model with Hill anisotropy. The following

sections will discuss the details of the specific models.

Table 1: Definition of the five identification cases

Identification method Hardening model Anisotropy Number of parameters

C1) Classical Ludwik - 5

C2) I-DIC Ludwik - 5

C3) I-DIC Ludwik-Voce - 7

C4) I-DIC Ludwik-Voce Hill 48 10

C5) I-DIC Ludwik Hill 48 8

3.2. Hardening Models245

To showcase the method of successively enriching the identification algo-

rithm a selection of hardening models is considered. There exist many inter-

esting modern hardening models for sheet metals [38], most of which include

anisotropy. However, for the present paper, basic models suffice with the added

benefit of not complicating the discussion. As a preliminary study, the following

five hardening models are discussed in Case C1,

Elastic: σ = Eε, σ ≤ σ0, (17)

Swift: σ = d(ε0 + εp)
b, σ > σ0, (18)

Ludwik: σ = σ0 + hεmp , σ > σ0, (19)

Voce: σ = σ∞ − (σ∞ − σ0) exp(−nεp), σ > σ0, (20)

Ludwik-Voce: σ = σ0 + hεmp + (σ∞ − σ0) exp(−nεp), σ > σ0, (21)

where εp is the plastic strain in the load direction, E the Young’s modulus, σ0

the yield stress and ε0, d, b, h, m, σ∞ and n are the hardening parameters of

the various models [39]. Not shown in the above equations is the Poisson’s ratio

ν adding another degree of freedom for identification.

3.3. Anisotropic Yielding250

To enrich the material model with anisotropic plasticity, Hill’s model is se-

lected [40] since it is a readily available option in Abaqus [37]. The anisotropic
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plasticity criterion used in Cases C4 and C5 is defined as

H1(σ22 − σ33)2 +H2(σ33 − σ11)2 +H3(σ11 − σ22)2

+ 2H4σ
2
23 + 2H5σ

2
31 + 2H6σ

2
12 = 1, (22)

with

H1 =
1

2

(
1

R2
22

+
1

R2
33

− 1

R2
11

)
, H4 =

3

2

1

R2
23

, (23)

H2 =
1

2

(
1

R2
33

+
1

R2
11

− 1

R2
22

)
, H5 =

3

2

1

R2
13

, (24)

H3 =
1

2

(
1

R2
11

+
1

R2
22

− 1

R2
33

)
, H6 =

3

2

1

R2
12

, (25)

where R11, R22, R33, R12, R13 and R23 are yield stress ratios. For a plane-

stress case, these ratios are interrelated such that four parameters suffice to fully

describe the yield surface [38]. Therefore, for Cases C4 and C5 the parameters

R22, R33, R12 and σ0 are used adding 3 parameters to the identification routine.

3.4. Classical Identification255

The classical way of identifying the material parameters is by fitting the

hardening laws defined by Equations (18)-(21) on experimental stress/strain

data. The stress and strain need to be derived from the measured data, which

requires some assumptions. In this case, the application of DIC allows for a

more local measurement of the strain, which is provided by averaging the strain

fields shown in Figure 2(c) within a virtual strain gauge that encompasses the

high strain area in the center of the sample (indicated by the dashed box in

Figure 2(a)). If no local measurement is used, the strain in the sample has to be

estimated from the elongation considering the geometry of the specimen. Know-

ing the strains more locally is an advantage when computing the stresses since

it can be used to correct the cross-sectional area by assuming incompressibility

σ =
F

A
≈ F exp(ε)

A0
, (26)

where σ is the yy-component of the true stress, A0 and A the cross-sectional

areas in the reference and deformed states, respectively. This estimation of the
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stress in a uniaxial experiment is perhaps not the most sophisticated and may

introduce some identification errors that may be prevented. However, for the

studied experiment the maximum strain level was of the order of 7 % and thus260

Equation (26) is assumed to be reasonably accurate.
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Figure 4: (a) Stress/strain response as computed from the measured force/displacement, fitted

with the hardening models defined in Equations (18)-(21) and the difference between the fitted

and measured stress ∆σyy . (b) The strain ratio obtained from the average strain inside the

virtual strain gauge, the average ratio over the time interval marked by the vertical lines, is

used to identify Poisson’s ratio. The force/time plot shows that the chosen data points are

those with significant force within the elastic regime of the experiment

Figure 4(a) shows that all 4 proposed hardening models can adequately de-

scribe the hardening behavior. The first three hardening models (i.e. Swift,

Ludwik and Voce) each use three parameters, while the last (i.e. Ludwik-Voce)

uses 5 parameters. Of the three parameter models, Ludwik’s model has the265

lowest residual, while the Ludwik-Voce model improves the residual, most no-

tably near the onset of plasticity. As a consequence, Ludwik’s model and the

Ludwik-Voce model will be studied further later on.

Figure 4(b) shows the strain ratio for the first few cycles. For time steps

where the strain level is too small the ratio becomes highly sensitive to noise.

Therefore, only the time steps for the second cycle are used to calibrate ν. The

second cycle is assumed to be fully elastic, which is reinforced by the third cycle

that shows yielding at a much higher force level. Additionally, it is possible to
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measure the Lankford ratio from the ratio of the two strain components in the

plane orthogonal to the loading direction,

r =
εxx
εzz
≈ 0.55, (27)

where εxx is measured directly while εzz can be estimated supposing incompress-

ibility. Assuming simple anisotropy, i.e. R22 = 1, allows for the determination

of R33

R33 =
r(r + 1)

2r
≈ 0.89, (28)

which shows that the material is plastically anisotropic as expected for rolled

aluminum sheets. Obtaining R22 from single point measurements like strain270

gauges would require a second experiment where the material is tested at 90 ◦

with respect to the rolling direction. Similarly identifying R12 would require an

experiment at 45 ◦. Full-field data may allow for identification of all three in-

plane anisotropy parameters from a single experiment, which will be discussed

next.275

3.5. Sensitivity Fields

The sensitivity matrices as defined in Equations (11)-(12) can be visualized

in the same space-time representation as used throughout the paper. In this

visual form they are referred to as sensitivity fields, since they have a similar

form as displacement fields. The five sensitivity fields shown in Figure 5 are280

used for identification purposes in Case C2.
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Figure 5: Sensitivity fields in terms of displacement SI and force SF for the five material

parameters used in all five cases. Note that SIx and SIy fields are normalized to equalize

their color ranges. Their respective amplitudes are given above the figure (p̄i). The purple

dashed boxes in the sensitivity fields for E and ν indicate the zone where sensitivity is set to

zero

Each sensitivity field has displacement parts SIx, SIy and force part SF .

Considering first the displacement parts, they are normalized to bring the fields

in a single plottable color range. Due to this, the fields represent the sensitivity

shape, while their amplitudes are written above the respective field (p̄i). These285

amplitudes underline the displacement sensitivity for each parameter. For ex-

ample, for a 1 % change in Young’s modulus, the change in displacement would

be 0.013 px for the dark red areas and -0.013 px for the dark blue areas (i.e.

at the extremes of the color bar). Assuming a 1 % change in each parameter,

these values show that the first two parameters (i.e. E and ν) have a sensitiv-290

ity below the displacement uncertainty (γU = 0.017 px), while the others (i.e.

σ0, h and m) are more sensitive than the uncertainty. The same analysis can

be performed on the force side of the sensitivity analysis. All force sensitivity

signals are higher than the expected force uncertainty, γF = 5 N, except for the

Poisson’s ratio, which is of the same order of magnitude.295
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For Case C3, two additional sensitivity fields are added to the identifica-

tion routine, namely, those describing the exponential hardening (i.e. σ∞ and

n). Cases C4 and C5 consider anisotropic yielding, which adds another three

parameters (i.e. R22, R33 and R12). The sensitivity fields corresponding to

these five parameters are shown in Figure 6. Analyzing these sensitivity fields300

reveals that σ∞ and R22 are very sensitive in force, but also in displacements,

R33 has low force but significant displacement sensitivity, while n and R12 are

neither sensitive in displacement nor in force. The low sensitivity of n and R12

(and also ν) will cause them to remain closer to their initial values as compared

to the unregularized situation. This is a necessary drawback of using Tikhonov305

regularization without which the method is unstable and no solution is obtained.

Figure 6: Sensitivity fields in terms of displacement S and force P for the five extra material

parameters used in Case C4. The first three are also used in Case C3. Note that the Sx and

Sy components are scaled with a normalization value shown above the figure (p̄i) to equalize

the color ranges

Figure 4a shows the elastic modulus as fitted on each of the elastic unloading

data. The moduli obtained on all but the initial elastic data are significantly

lower than the initial modulus (i.e. 66 MPa vs. 73 MPa). Consequently, if

the elastic parameters (i.e. E and ν) would be identified using the entire data310
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set, they would be sensitive to this stiffness reduction. Within the adopted

Integrated-DIC method it is possible to counter this sensitivity by setting the

sensitivity matrices [SI ] and [SF ] to zero for all time steps that occur after the

onset of plasticity. In general this will result in a less optimal identification with

higher residuals. However, the resulting identified elastic parameters would ad-315

here more to how they are typically defined. Not limiting the elastic sensitivity

to the initial regime would result in elastic parameters that are effective, or av-

erage, parameters. Ideally, the constitutive model should be enriched to include

a mechanism such as damage that can account for this reduction in stiffness,

but that is considered outside of the scope of this paper. For all full-field identi-320

fication cases (i.e. C2-C5) the sensitivity fields for E and ν are set to zero after

τ = 30 as indicated with the dashed purple boxes in Figure 5.

3.6. Identified Parameters

The results from the five identification cases are summarized in Table 2.

All four integrated methods converged in 10 iterations or less, which is mostly a325

consequence of the quality of the initial guess for which the obtained parameters

from the previous case were used. All five methods returned comparable param-

eters, which gives confidence that their values are trustworthy. The identified

elastic and plastic parameters are in line with typical values found in literature.

Without further data, it is not possible to decide which identified parameters330

adhere more closely to the reality. However, the residuals, which will be dis-

cussed later on, decrease from Cases C1 to C5 showing that the last case more

closely describes the experiment.
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Table 2: Identified parameters for the five different identification cases

E ν σ0 h m σ∞ n R22 R33 R12

GPa - MPa MPa - MPa - - - -

C1) Ludwik 73.7 0.29 363 588 0.48 - - - - -

C2) Ludwik 71.8 0.28 331 487 0.34 - - - - -

C3) Ludwik-Voce 72.5 0.29 284 502 0.21 242 393 - - -

C4) Ludwik-Voce-Hill 72.3 0.30 274 491 0.20 222 429 1.03 0.89 1.44

C5) Ludwik-Hill 71.7 0.30 372 561 0.35 - - 0.91 0.86 1.33

The hardening parameters changed more significantly between the identifi-

cation cases. The low σ0 values for C3 and C4 are the consequence of the ex-335

ponential hardening law that significantly influences the early plasticity regime.

It is important to note that, although the plastic parameters change, the corre-

sponding stress/strain curves are nearly indistinguishable (see Figure 7).
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Figure 7: Stress/strain response for each case using the parameters listed in Table 2

All five parameter sets given in Table 2 are valid representations of the mate-

rial behavior and will provide predictive capabilities. Since the parameters are340

not strictly uncoupled, enriching the material description will inevitably lead
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to a change in the previously identified parameters. Consider for instance the

R22 parameter, which is strongly affected by the presence of the Voce model.

Without further experiments it is difficult to definitely conclude that this stiff-

ness reduction is due to damage or anisotropy. However, the lower residuals345

obtained for Case C4 (discussed in the next section) indicate that C4 is a more

likely solution.

Last, it is emphasized that full-field identification methods are able to iden-

tify complex material models from such a simple experiment. The identification

capacity would only increase for inhomogeneous experiments, enabling the iden-350

tification of more complex and realistic models.

3.7. Residuals

This section discusses three types of residuals, namely, displacement, image

and force residuals. It should be noted that only the last two are considered

in I-DIC. The displacement residual is available because a non-integrated DIC355

analysis is also performed. Additionally, the analysis of these full-field resid-

uals for classical identification methods is possible due to the availability of a

simulation of the experiment using the obtained parameters.

Table 3 shows the global residuals for each identification case. The most

significant residual is the 317 N level in force for Case C1. A second observation360

is that the total residuals η consistently decrease from one Case C1 to C4. This

trend proves that each of these cases describes the experiment better than its

predecessor.
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Table 3: Residuals remaining after convergence for each of the five identification cases, η is

the total residual of the cost function (Equation (3))

RU [px] RI [%] RF [N] η [-]

C1) Classical 0.28 4.94 317 1.66

C2) Ludwik 0.26 4.71 197 1.58

C3) Ludwik-Voce 0.26 4.69 217 1.57

C4) Ludwik-Voce-Hill 0.13 3.3 214 1.11

C5) Ludwik-Hill 0.14 3.37 197 1.13

DIC - 2.83 - -

Figure 8 shows the full residuals for each case in space and time for the dis-

placement, image, and force. They are a detailed representation of the distance365

between the experiment and its simulation. Full-field identification methods

typically give access to these residuals. Classical identification cases rarely have

access to these residuals, since they require simulating the experiment with the

calibrated parameters, something that is typically not required for the identi-

fication [6]. However, it is in all cases possible to generate these residuals and370

use them to analyze where in space and time the identification was within the

expected accuracy.
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Figure 8: Full-field residuals for all five cases (Table 1). The top two rows show the displace-

ment residuals as compared to DIC, the third row shows the image residuals and the bottom

row shows the force residuals. The ellipses marked A to D are discussed in the text

Case C1 shows the residual fields as obtained by using the parameters from

classical identification. Although, this identification method has the lowest

residuals in terms of stress-strain (Figure 7), it has the highest image and force375

residuals. Whether these residuals are acceptable depends on the application

of the identified model. In any way, they are much larger than the expected

measurement uncertainty. Moreover, they are non-white, they have a structure

or signature indicating that the gap between the model and the experiment is

due to the limitations of the applied model.380

Case C2 is the full-field version of Case C1, calibrating the same model

parameters. The minimization on the image and force residuals will naturally

reduce them. For this case the most significant reduction comes from the force
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residual (see the ellipse marked A in Figure 8). The absence of significant

reductions in the image and displacement residuals indicates these residuals are385

not due to identification errors but are the consequences of limitations of the

chosen constitutive model.

Case C3 is the enriched version of Case C2 by adding an exponential part to

the hardening law. The additional three degrees of freedom did not significantly

improve the residuals. There is a minor signature in the early plasticity regime390

(see the ellipse marked B in Figure 8). From these residuals it is clear that both

versions of the hardening law perform comparably but do not resolve the most

significant remaining residual.

Case C4 adds anisotropy to the identification. It significantly improves the

full-field residuals. A signature in the x-component of displacement Rux is395

strongly reduced while also reducing a large portion of the image residual (see

the ellipse marked C in Figure 8). It is interesting to note that the shape of

the removed residual resembles the sensitivity field of R22 and R33 shown in

Figure 6.

Case C5 removes the exponential hardening degrees of freedom that were400

added in Case C3 while retaining the anisotropy degrees of freedom. Similarly to

the comparison of C2 and C3, in comparison between C4 and C4 the differences

are limited. There is a zone in the Ruy residual that is similar in signature but

less pronounced in Case C4 and the same force residual signature has returned

in the early plasticity regime (see the ellipses marked D and B in Figure 8405

respectively).

Ultimately, the case with the lowest residuals is Case 4. This model most

accurately describes the experiment at hand. However it can be argued that

there are still significant residuals remaining, especially in the force signal. The

force residuals are highest at the dashed lines, which are exactly at the bottom410

of the unloading cycles. The followed method of successively enriching the

model can be continued to also isolate the constitutive behavior that is causing

this residual. However, this is considered beyond the scope of this paper. An

obvious candidate for future enrichments would be models that can account for
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the observed reduction in elastic modulus like, for instance, damage.415

4. Conclusions

The experiment discussed herein is a uniaxial tensile test. The sample geom-

etry was not optimized for identifying anisotropic plasticity. However through

the use of full-field identification methods, it was possible to identify 10 pa-

rameters from a single experiment to varying accuracy. This analysis shows420

that the data density, which is currently attainable, is very rich and full-field

identification methods can benefit from all of them.

Identification is a process to minimize the experiment/simulation gap. In

this process, having more degrees of freedom in the material model typically

allows for reducing the model error. For cases where the residuals are much425

greater than the expected uncertainty it is important to evaluate the shape or

signature of the residual. Comparing the residual fields to sensitivity fields of

perhaps previously unused parameters will highlight if the corresponding model

enrichments will have an impact on the identification quality.

For full-field identification methods, tools like residual and sensitivity fields430

are part of the procedure. Therefore, they are accessible and valuable for grad-

ually improving the identification results. Even for other methods, where these

fields are not readily available, it is always possible to obtain them by simulat-

ing the experiment and comparing the measured quantities with their simulated

counterparts. Similarly, sensitivity fields can be constructed from perturbations435

of the same simulation. In most cases, the goal of obtaining the material pa-

rameters is to use them in FE simulations. Consequently, this proposition is

only a small and highly advisable extra step.

Last, enriching the material models gradually reduced the residuals. In

particular it was shown that a significant reduction in residuals occurs when full-440

field data are used instead of the classical way of identifying models with such

a simple geometry. Further, as long as the parameters are independent enough,

enriching the model not only identifies a more complex material behavior but
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also reduces the residual. The previous parameters will be identified to greater

accuracy as well.445
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