Braid group action and root vectors for the q-Onsager algebra - Archive ouverte HAL
Article Dans Une Revue Transformation Groups Année : 2020

Braid group action and root vectors for the q-Onsager algebra

Pascal Baseilhac

Résumé

We define two algebra automorphisms $T_0$ and $T_1$ of the q-Onsager algebra Bc, which provide an analog of G. Lusztig's braid group action for quantum groups. These automorphisms are used to define root vectors which give rise to a PBW basis for Bc. We show that the root vectors satisfy q-analogs of Onsager's original commutation relations. The paper is much inspired by I. Damiani's construction and investigation of root vectors for the quantized enveloping algebra of $\widehat{sl_2}$.
Fichier principal
Vignette du fichier
BASEILHAC-KOLB2020_Article_BRAIDGROUPACTIONANDROOTVECTORS(1) (1).pdf (357.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01549066 , version 1 (18-11-2020)

Identifiants

Citer

Pascal Baseilhac, Stefan Kolb. Braid group action and root vectors for the q-Onsager algebra. Transformation Groups, 2020, 25 (June), pp.363-389. ⟨10.1007/s00031-020-09555-7⟩. ⟨hal-01549066⟩
274 Consultations
54 Téléchargements

Altmetric

Partager

More