Computing the Homology of Basic Semialgebraic Sets in Weak Exponential Time - Archive ouverte HAL
Article Dans Une Revue Journal of the ACM (JACM) Année : 2018

Computing the Homology of Basic Semialgebraic Sets in Weak Exponential Time

Résumé

We describe and analyze an algorithm for computing the homology (Betti numbers and torsion coefficients) of basic semialgebraic sets which works in weak exponential time. That is, out of a set of exponentially small measure in the space of data the cost of the algorithm is exponential in the size of the data. All algorithms previously proposed for this problem have a complexity which is doubly exponential (and this is so for almost all data).
Fichier principal
Vignette du fichier
Semialgebraic.pdf (892.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01545657 , version 1 (22-06-2017)
hal-01545657 , version 2 (19-12-2018)

Identifiants

Citer

Peter Bürgisser, Felipe Cucker, Pierre Lairez. Computing the Homology of Basic Semialgebraic Sets in Weak Exponential Time. Journal of the ACM (JACM), 2018, 66 (1), pp.1-30. ⟨10.1145/3275242⟩. ⟨hal-01545657v2⟩
325 Consultations
258 Téléchargements

Altmetric

Partager

More