Vector autoregressive models : a Gini approach - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Vector autoregressive models : a Gini approach

Résumé

In this paper, it is proven that the usual VAR approach may be performed in the Gini sense, that is, on a l1 metric space. The Gini regression is robust to outliers. As a consequence, when the data are contaminated by extreme values, we show that semi-parametric VAR-Gini regressions may be used to obtain robust estimators. The inference on the estimators is made with l1 norm. Also, impulse response functions and Gini decompositions for pervision errors are introduced. Finally, Granger's causality tests are properly derived based on U-statistics.
Fichier principal
Vignette du fichier
MussardStephane_2017-01Dep.pdf (530.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01543271 , version 1 (20-06-2017)

Licence

Identifiants

  • HAL Id : hal-01543271 , version 1

Citer

Stéphane Mussard, Oumar N'Diaye. Vector autoregressive models : a Gini approach. 2017. ⟨hal-01543271⟩

Collections

UNIMES
112 Consultations
571 Téléchargements

Partager

More