Piecewise Constant Martingales and Lazy Clocks - Archive ouverte HAL
Article Dans Une Revue Probability, Uncertainty and Quantitative Risk Année : 2019

Piecewise Constant Martingales and Lazy Clocks

Résumé

This paper discusses the possibility to find and construct piecewise constant martingales, that is, martingales with piecewise constant sample paths evolving in a connected subset of R. After a brief review of standard possible techniques, we propose a construction based on the sampling of latent martingales Z̃ with lazy clocks θ. These θ are time-change processes staying in arrears of the true time but that can synchronize at random times to the real clock. This specific choice makes the resulting time-changed process Z. = Z̃(θ.) a martingale (called a lazy martingale) without any assumptions on Z̃, and in most cases, the lazy clock θ is adapted to the filtration of the lazy martingale Z. This would not be the case if the stochastic clock θ could be ahead of the real clock, as typically the case using standard time-change processes. The proposed approach yields an easy way to construct analytically tractable lazy martingales evolving on (intervals of) R.
Fichier principal
Vignette du fichier
main.pdf (626.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01537241 , version 1 (26-06-2017)

Identifiants

  • HAL Id : hal-01537241 , version 1

Citer

Christophe Profeta, Frédéric Vrins. Piecewise Constant Martingales and Lazy Clocks. Probability, Uncertainty and Quantitative Risk, 2019, 4 (2). ⟨hal-01537241⟩
78 Consultations
71 Téléchargements

Partager

More