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Abstract

This paper discusses the possibility to find and construct piecewise constant martingales, that
is, martingales with piecewise constant sample paths evolving in a connected subset of R. After
a brief review of standard possible techniques, we propose a construction based on the sampling
of latent martingales Z̃ with lazy clocks θ. These θ are time-change processes staying in arrears
of the true time but that can synchronize at random times to the real clock. This specific choice
makes the resulting time-changed process Zt = Z̃θt a martingale (called a lazy martingale) without
any assumptions on Z̃, and in most cases, the lazy clock θ is adapted to the filtration of the lazy
martingale Z. This would not be the case if the stochastic clock θ could be ahead of the real clock,
as typically the case using standard time-change processes. The proposed approach yields an easy
way to construct analytically tractable lazy martingales evolving on (intervals of) R.

1 Introduction

In the literature, pure jump processes defined on a filtered probability space (Ω,F ,F,P), where F :=
(Ft, 0 6 t 6 T ) and F := FT , are often referred to as stochastic processes having no diffusion part.
In this paper we are interested in a subclass of pure jump (PJ) processes: piecewise constant (PWC)
martingales defined as follows.

Definition 1 (Piecewise constant martingale). A piecewise constant F-martingale Z is a càdlàg F-
martingale whose jumps ∆Zs = Zs − Zs− are summable (i.e.

∑
s6T |∆Zs| < +∞ a.s.) and such that

for every t ∈ [0, T ] :

Zt = Z0 +
∑
s6t

∆Zs .

In particular, the sample paths Z(ω) for ω ∈ Ω belong to the class of piecewise constant functions of
time.

Note that an immediate consequence of this definition is that a PWC martingale has finite variation.
Such type of processes may be used to represent martingales observed under partial (punctual) infor-
mation, e.g. at some (random) times. One possible field of application is mathematical finance, where
discounted price processes are martingales under an equivalent measure. Without additional informa-
tion, a reasonable approach may consist in assuming that discounted prices remain constant between
arrivals of market quotes, and jump to the level given by the new quote when a new trade is done. More
generally, this could represent conditional expectation processes (i.e. “best guess”) where information
arrives in a discontinuous way. An interesting application in that respect is the modeling of quoted
recovery rates. They correspond to the market’s view of a firm’s recovery rate R upon default. Being
conditional expectations of random variables in [0, 1] associated to remote events, they are martingales
evolving in the unit interval, whose trajectories remain constant for long period of times, but jumps from
time to time, when dealers update their views to specialized data providers.

Pure jump martingales can easily be obtained by taking the difference of a pure jump increasing
process with a predictable, grounded, right-continuous process of bounded variation (called compensator).

∗LaMME, Univ Evry, CNRS, Université Paris-Saclay, 91025, Evry, France; christophe.profeta@univ-evry.fr.
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The simplest example is probably the compensated Poisson process of parameter λ defined by (Mt =
Nt−λt, t > 0). This process is a pure jump martingale with piecewise linear sample paths, hence is not
a PWC martingale as

∑
s6t ∆Ms = Nt 6= Mt. Clearly, not all martingales having no diffusion term are

piecewise linear. For example, the Azéma martingale M defined as

Mt := E[Wt|σ(sign(Ws))s6t] = sign(Wt)

√
π

2

√
t− g0

t (W ) , g0
t (W ) := sup{s 6 t,Ws = 0} (1)

where W is a Brownian motion, is essentially piecewise square-root (see e.g. Section 8 of [8] for a
detailed analysis of this process). Similarly, the Geometric Poisson Process eNt log(1+σ)−λσt is a positive
martingale with piecewise negative exponential sample paths [12, Ex 11.5.2].

In Section 2, we present several routes to construct PWC martingales. We then introduce a different
approach in Section 3, adopting a time-changed technique. This method proves to be very flexible as
the time-changed and the latent processes have the same range (if not time-dependent).

2 Piecewise constant martingales

Most of the “usual” martingales with no diffusion term fail to have piecewise constant sample paths.
However, finding such type of processes is not difficult. We provide below three different methods
to construct such type of processes. Yet, not all are equally powerful in terms of tractability. The last
method proves to be quite appealing in that it yields PWC martingales whose range can be any connected
set.

2.1 An autoregressive construction scheme

We start by looking at a subset of PWC martingales, namely step martingales. These are martingales
whose paths belong to the space of step functions on any bounded interval. As a consequence, a step
martingale Z admits a finite number of jumps on [0, T ] taking places at, say (τk, k > 1), and may be
decomposed as (with τ0 := 0)

Zt = Z0 +

+∞∑
k=1

(Zτk − Zτk−1
)1{τk6t} .

Looking at such decomposition, we see that step martingales may easily be constructed by an au-
toregressive scheme.

Proposition 1. Let (Mn, n ∈ N) be a martingale such that supi>1 E[|Mi−Mi−1|] < +∞. Let (τk, k > 1)

be an increasing sequence of random times, independent from M , and set At :=
∑+∞
k=1 1{τk6t}. We

assume that E[At] < +∞. Then, the process

Zt := M0 +

+∞∑
k=1

(Mk −Mk−1)1{τk6t} = MAt

is a step martingale with respect to its natural filtration.

Proof. We first have

E[|Zt|] 6 E[|M0|] +

(
sup
i>1

E[|Mi −Mi−1|]
) +∞∑
k=1

P(τk 6 t) < +∞

which proves that Zt is integrable. The martingale property is then an immediate consequence of the
increasing time change A.

Example 1. Let N be a Cox process with intensity λ = (λt)t>0 and τ1, . . . , τNt be the sequence of jump
times of N on [0, t] with τ0 := 0. If (Yk, k > 1) is a family of independent and centered random variables,
then

Zt := Z0 +

∞∑
k=1

Yk1{τk6t} = Z0 +

Nt∑
k=1

Yk , Z0 ∈ R
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is a PWC martingale. Note that we may choose the range of such a PWC martingale by taking bounded
random variables. For instance, if Z0 = 0 and for any k > 1,

P
(

6a

π2k2
6 Yk 6

6b

π2k2

)
= 1

with a < 0 < b, then for any t > 0, we have Zt ∈ [a, b] a.s.

The above construction scheme provides us with a simple method to construct PWC martingales.
Yet, it suffers from two restrictions. First, the distribution of Zt requires averaging the conditional
distribution with respect to the Poisson distribution of rate λ, i.e. an infinite sum. Second, a control on
the range of the resulting martingale requires strong assumptions. In Example 1, the Yi’s are independent
but their support decreases as 1/k2. One might try to relax the independence assumption by drawing Yi
from a distribution whose support is state dependent like [a− Zτi−1 , b− Zτi−1 ], in which case Zt ∈ [a, b]
for all t ∈ [0, T ]. By doing so however, we typically loose the tractability of the distribution. In Example
1 for instance, the characteristic function can be found in closed form, but it features an infinite sum
(over the Poisson states) of products (of increasing size) of characteristic functions associated to the
random variables (Yi). In the sequel, we address these drawbacks by proposing another construction
scheme, that would provide us with more tractable expressions.

2.2 PWC martingales from PJ martingales with vanishing compensator

As hinted in the introduction, PWC martingales can be easily obtained by taking the difference of two
pure jump processes whose compensators cancel out. We start by looking at subordinators.

Lemma 1 (Pure jump martingales constructed from subordinators). Let J1 and J2 be two i.i.d. subor-
dinators, with characteristic exponent :

ϕJ1
t
(u) := E

[
eiuJ

1
t

]
= exp

(
−t
∫ +∞

0

(1− eiux)ν(dx)

)
.

We assume that the Lévy measure ν satisfies the integrability condition
∫ +∞

0
xν(dx) < +∞. Then,

Z := J1 − J2 is a PWC symmetric martingale whose characteristic function is given by

ϕZt(u) = exp

(
−2t

∫ +∞

0

(1− cos(ux))ν(dx)

)
.

Proof. Observe first that the assumption
∫ +∞

1
xν(dx) < +∞ implies that J1 is integrable, while

∫ 1

0
xν(dx) <

+∞ implies that J1 admits the decomposition J1
t =

∑
s6t ∆Js, see [1, p.15]. The result then follows

from the fact that M1
t =

∑
s6t ∆J1

s − t
∫ +∞

0
xν(dx) is a martingale.

As obvious examples, one can mention the difference of two independent Gamma or Poisson processes
of same parameters. Note that stable subordinators are not allowed here, as they do not fulfill the
integrability condition. We give below the probability density of these two examples :

Example 2. Let N1, N2 be two independent Poisson processes with parameter λ. Then, Z := N1−N2 is
a step martingale taking integer values, with marginals given by the Skellam distribution with parameters
µ1 = µ2 = λ :

fZt(k) = e−2λtI|k|(2λt), k ∈ Z , (2)

where Ik is the modified Bessel function of the first kind.

Example 3. Let γ1, γ2 be two independent Gamma processes with parameters a, b > 0. Then, Z :=
γ1 − γ2 is a PWC martingale with marginals given by

fZt(z) =
b√

πΓ(at)

∣∣∣∣bz2
∣∣∣∣at− 1

2

K 1
2−at

(b|z|) , (3)

where Kβ denotes the modified Bessel function of the second kind with parameter β ∈ R.
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Proof. The probability density of Zt is given, for 2at > 1, by the inverse Fourier transform, see [4, p.349
Formula 3.385(9)] :

fZt(z) =
1

2π

∫
R

e−iuz(
1 + iub

)at (
1− iub

)at du .
The result then follows by analytic continuation.

Note that more generally, a similar proof allows to characterize the centered Lévy processes which
are PWC martingales.

Proposition 2. A centered Lévy process L is a PWC martingale if and only if it has no drift, no
Brownian component and its Lévy measure ν satisfies the integrability condition

∫
R |x|ν(dx) < ∞, i.e.

its Lévy triple is (0, 0, ν) with ν integrable as above.

We conclude this section with an example of PWC martingale which does not belong to the family
of Lévy processes but has the interesting feature to evolve in a time-dependent range.

Lemma 2. Let W 1,W 2 be two independent Brownian motions. For i = 1, 2 set

g0
t (W i) := sup{s 6 t, W i

s = 0}.

Then, Z := g0(W 1)− g0(W 2) is a 1-self-similar PWC martingale which evolves in the cone {[−t, t], t >
0}. Its Laplace transform admits the expansion :

ϕZt(iu) = E
[
e−uZt

]
=

+∞∑
k=0

(2k)!

(k!)4

(
ut

4

)2k

and its cumulative distribution function (for t > 0) is given, for −t 6 z 6 t, by :

FZt(z) =
1

2
+ sign(z)

2

π2

∫ π
2

0

ln

(
tan(x)

|z|
t

+

√
1 + tan2(x)

z2

t2

)
dx

cos(x)
.

Proof. By Protter [8, Theorem 87], the processes
(
g0
t (W i)− t

2 , t > 0
)

are martingales, hence so is Z.
Denoting by M the Azéma martingale (1), the PWC property follows from the fact that the event
{g0
s(W ) 6= g0

s−(W )} implies {Ws = 0 ∩ g0
s(W ) = s} hence

g0
t (W ) =

2

π
[M,M ]t =

2

π

∑
s6t

(∆Ms)
2 =

∑
s6t

(
−sign(Ws−)

√
s− g0

s−(W )

)2

=
∑
s6t

g0
s(W )− g0

s−(W ) .

Next, the self-similarity of Z comes from that of g0(W ), which further implies that for t > 0 :

Zt ∼ t (g0
1(W 1)− g0

1(W 2)) ∈ [−t, t] .

Finally, since g0
1(W ) follows the Arcsine law, we deduce on the one hand, using a Cauchy product, that :

E
[
e−uZt

]
= I2

0

(
ut

2

)
=

+∞∑
k=0

(
ut

4

)2k k∑
i=0

1

(i!(k − i)!)2

=

+∞∑
k=0

(
ut

4

)2k
1

(k!)2

k∑
i=0

(
k

i

)2

=

+∞∑
k=0

(
ut

4

)2k
1

(k!)2

(
2k

k

)
.

On the other hand, the density of Z1 is given by the convolution, for z ∈ [0, 1] :

fZt(z) =
1

π2

∫ 1−z

0

1√
x(1− x)

1√
(z + x)(1− z − x)

dx =
2

π2
F
(π

2
,
√

1− z2
)
,

where F denotes the incomplete elliptic integral of the first kind, see [4, p.275, Formula 3.147(5)]. This
yields, by symmetry and scaling :

fZt(z) =
2

π2

∫ π
2

0

dx√
t2 cos2(x) + z2 sin2(x)

1{0<|z|6t}

and the resulting cumulative distribution function is obtained upon integration in z.
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Both the recursive and the vanishing compensators approaches are rather restrictive in terms of
attainable range and analytical tractability. In the next section, we provide a more general method
that can be used to build PWC martingales to any connected set of R (compatible with the martingale
property, i.e. non-decreasing w.r.t. time) in a simple and tractable way.

2.3 PWC martingales using time-changed techniques

In this section, we construct a PWC martingale Z by time-changing a latent (P,F)-martingale Z̃ =
(Z̃t)t∈[0,T ] with the help of a suitable time-change process θ.

Definition 2. A F time-change process θ = (θt)∈[0,T ] is a stochastic process satisfying

• θ0 = 0

• for any t ∈ [0, T ], θt is Ft-measurable (i.e. θ is adapted to the filtration F)

• the map t 7→ θt is càdlàg a.s. non-decreasing

Under mild conditions stated below, Z := (Z̃θt)t>0 is proven to be a martingale on [0, T ] with
respect to its own filtration, with the desired piecewise constant behavior. Most results regarding time-
changed martingales deal with continuous martingales time-changed with a continuous process [6, 9].
This does not provide a satisfactory solution to our problem as the resulting martingale will obviously
have continuous sample paths. On the other hand, it is obvious that not all time-changed martingales
remain martingales, so that conditions are required on Z and/or on θ.

Remark 1. Every F-semi-martingale time-changed with a F-adapted process remains a semi-martingale
but not necessarily a martingale. For instance, setting Z̃ = W and θt = inf{s : Ws > t} then Z̃θt = t.
Also, even if θ is independent from Z̃, Z may fail to be a martingale in the above filtration because of
integrability issues. For example if Z̃ = W and θ is an independent α-stable subordinator with α = 1/2

then the time-changed process Z is not integrable: E[|Z̃θt | |θt] =
√

2
π

√
θt and E[

√
θt] is undefined.

A sufficient condition to ensure that the time-changed martingale remains a martingale is to constraint
Z̃ to be positive independent from θ. Taking as θ a time-change process independent from Z̃ > 0, this
result allows one to construct piecewise constant martingales having the same range as Z̃. This is shown
in the next lemma [2, Lemma 15.2 ] 1

Lemma 3. Let Z̃ be a positive martingale (in its own filtration) and θ be an independent time-change
process. Then, the time-changed process Z is again a martingale in the filtration generated by the time-
changed process Z̃ and the stochastic clock θ.

As suggested in [2], one possibility to relax the positivity constraint on Z̃ is to impose an integrability
condition on Z̃ only. For instance, uniform integrability of Z̃ is enough in that respect.

Lemma 4. Let Z̃ be a uniformly integrable martingale relative to its natural filtration. Then Z· := Z̃θ·
is a martingale in the filtration generated by the time-changed process Z̃ and the stochastic clock θ.

Proof. It is enough to discuss the integrability of Z (the conditional expectation discussion is the same
as above). The martingale property of Z̃ forces |Z̃| to be a submartingale: E[|Z̃t|] 6 E[|Z̃∞|] where the
right-hand side is bounded by some constant M from uniform integrability. Hence,

E[|Zt|] = E[|Z̃θt |] 6 E[|Z̃∞|] 6M .

Note that the requirement that Z̃ is integrable on [0,∞) is needed in the case where θ is unbounded.
One can weaken the condition on Z̃ by moving the integrability requirement on the time-changed process
θ as shown in the below lemma.

1This result is derived in a chapter considering continuous time change processes (“this rules out subordinators”).
However the authors do not rely on this assumption in the proof. Moreover, they use as a counter-example Z̃ = W
a Brownian motion and θ a subordinator, suggesting that subordinators fit in the scope of stochastic clock processes
considered in this lemma.
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Lemma 5. Let θ be bounded on [0, T ] (i.e. there exists an increasing function k such that θt 6 k(t) for
all t and thus θt 6 k(T )) and Z̃ be a martingale (in its own filtration) on [0, k(T )], independent from
θ. Then, Z is a martingale on [0, θT ] in the filtration generated by the time-changed process Z̃ and the
stochastic clock θ.

Proof. As Z̃ is integrable on [0, k(T )] there exists an increasing function f such that : E[|Z̃t|] 6 f(t) <∞
for all t ∈ [0, k(T )]. Hence, for all t ∈ [0, T ]:

E[|Z̃θt |] 6 E[|Z̃k(T )|] 6 f(k(T )) <∞

From a practical point of view, time-changed processes θ that are unbounded on [0, T ] may cause
some problems, especially when the transition densities of Z̃ are not explicitly known. In such cases
indeed (or when Z̃ needs to be simulated jointly with other processes), sampling paths of Z̃ calls for a
discretization scheme, whose error typically increases with the time step. Hence, sampling Z on [0, T ]
typically requires a fine sampling of Z̃ on [0, θT ], leading to prohibitive computational times if θT is
allowed to take very large values.Hence, the class of time-changed processes θ that are bounded by some
function k on [0, T ] for any T <∞ whilst preserving analytical tractability proves to be quite interesting.
This is of course violated by most of the standard time-change processes (e.g. integrated CIR, Poisson,
Gamma, or Compounded Poisson subordinators). A naive alternative consists in capping the later but
this would trigger some difficulties. Using θt = Nt ∧ t would mean that Z = Z0 on [0, 1] whilst if we
choose θt = Jt ∧ t the resulting process may have linear pieces (hence not be piecewise constant). There
exist however simple time-change processes θ satisfying sups∈[0,t] θs 6 k(t) for some functions k bounded
on any closed interval and being piecewise constant, having stochastic jumps and having a non-zero
possibility to jump in any time set of non-zero measure. Building PWC martingales using such type of
processes is the purpose of next section.

3 Lazy martingales

We first present a stochastic time-change process that satisfies this condition in the sense that the
calendar time is always ahead of the stochastic clock that is, satisfies the boundedness requirement of
the above lemma with the linear boundary k(t) = t. We then use the later to create PWC martingales.

3.1 Lazy clocks

We would like to define stochastic clocks that keep time frozen almost everywhere, can jump occasionally,
but can’t go ahead of the real clock. Those stochastic clocks would then exhibit the piecewise constant
path and the last constraint has the nice feature that any stochastic process Z adapated to F, Zt ∈ Ft is
also adapted to F enlarged with the filtration generated by θ. In particular, we do not need to know the
value of Z after the real time t. As far as Z is concerned, only the sample paths of Z (in fact Z̃) up to
θt 6 t matters. In the sequel, we consider a specific class of such processes, called lazy clocks hereafter,
that have the specific property that the stochastic clock typically “sleeps” (i.e. is “on hold”), but gets
synchronized to the calendar time at some random times.

Definition 3. The stochastic process θ : R+ → R+, t 7→ θt is a F-lazy clock if it satisfies the following
properties

i) it is a F-time change process: in particular, it is grounded (θ0 = 0), F-adapted, càdlàg and non-
decreasing;

ii) it has piecewise constant sample paths : θt =
∑
s6t ∆θs;

iii) it can jump at any time and, when it does, it synchronizes to the calendar clock.

In the sense of this definition, Poisson and Compound Poisson processes are examples of subordinators
that keep time frozen almost everywhere but are not lazy clocks however as nothing constraints them to
reach t if they jump at t. Neither are their capped versions as there are some intervals during which θ
cannot jump or grows linearly.
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(a) Poisson Lazy clock (λ = 3/2, see Section 3.1.1)
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(b) Brownian Lazy clock (see Section 3.1.2)

Figure 1: Sample path of Lazy clocks on [0, 5].

Remark 2. Note that for each t > 0, the random variable θt is a priori not a (Fs, s > 0)-stopping time.
In fact, defining

Ct := inf{s ; θs > t}
then (Ct, t > 0) is an increasing family of F-stopping times. Conversely, for every t > 0, the lazy clock
θ is a family of (FCs , s > 0)-stopping times, see Revuz-Yor [9, Chapter V].

In the following, we shall show that lazy clocks are essentially linked with last passage times, as
illustrated in the next proposition.

Proposition 3. A process θ is a lazy clock if and only if there exists a càdlàg process A such that the
set Z := {s; As− = 0 or As = 0} has a.s. zero Lebesgue measure and θt = gt with

gt := sup{s 6 t; As− = 0 or As = 0} .

Proof. If θ is a lazy clock, then the result is immediate by taking At = θt− t which is càdlàg, and whose
set of zeroes coincides with the jumps of θ, hence is countable. Conversely, fix a path ω. Since A is
càdlàg, the set Z(ω) = {s;As−(ω) = 0 or As(ω) = 0} is closed, hence its complementary may be written
as a countable union of disjoint intervals. We claim that

Zc(ω) =
⋃
s>0

]gs−(ω), gs(ω)[ . (4)

Indeed, observe first that since s 7−→ gs(ω) is increasing, its has a countable number of discontinuities,
hence the union on the right hand side is countable. Furthermore, the intervals which are not empty
are such that As(ω) = 0 or As−(ω) = 0 and gs(ω) = s. In particular, if s1 < s2 are associated with non
empty intervals, then gs1(ω) = s1 6 gs−2

(ω) which proves that the intervals are disjoint.

Now, let u ∈ Zc(ω). Then Au(ω) 6= 0. Define du(ω) = inf{s > u, As−(ω) = 0 or As(ω) = 0}.
By right-continuity, du(ω) > u. We also have Au−(ω) 6= 0 which implies that gu(ω) < u. Therefore,
u ∈]gu(ω), du(ω)[ which is non empty, and this may also be written u ∈]gd−u (ω)(ω), gdu(ω)(ω)[ which proves

the first inclusion. Conversely, it is clear that if u ∈]gs−(ω), gs(ω)[, then Au(ω) 6= 0 and Au−(ω) 6= 0.
Otherwise, we would have u = gu(ω) 6 gs−(ω) which would be a contradiction. Equality (4) is thus
proved. Finally, it remains to write :

gt =

∫ gt

0

1Zds+

∫ gt

0

1Zcds =
∑
s6t

∆gs

7



since Z has zero Lebesgue measure.

We give below examples of lazy clocks admitting simple closed-form distributions.

3.1.1 Poisson Lazy clock

Example 4. Let (Xk, k > 1) be strictly positive random variables and consider the counting process(
Nt :=

∑+∞
k=1 1{

∑k
i=1Xi6t}

, t > 0
)
. Then the process (gt(N), t > 0) defined as the last jump time of N

prior to t or zero if N did not jump by time t:

gt(N) := sup{s 6 t;Ns 6= Ns−} =

+∞∑
k=1

Xk1{
∑k
i=1Xi6t}

(5)

is a lazy clock.

In the case where N is a Poisson process of intensity λ, i.e. when the r.v.’s (Xk, k > 1) are i.i.d. with
an exponential distribution of parameter λ, the law of gt(N) may easily be computed as follows.

Lemma 6. Assume that N is a Poisson process with parameter λ. Let t > 0 and δ(x) be the Dirac
density centered at 0. The distribution of gt(N) is given by

fgt(N)(s) = e−λt(δ(s) + λeλs) , 0 6 s 6 t (6)

and is zero elsewhere. Hence, the cumulative distribution function is

Fgt(N)(s) = 1{06s6t}e
−λ(t−s) + 1{s>t} (7)

and the moments are given by

E
[
(gt(N))k

]
=

k!

(−λ)k
(1− e−λt) +

k−1∑
i=0

(−1)i
tk−ik!

λi(k − i)!
, k ∈ {1, 2, . . .} (8)

Proof. This result may be proven adopting a similar strategy as in Propostion 3 of [13], but we shall take
here a shorter route. We merely have to show that (i) P(gt(N) = 0) = e−λt, (ii) fgt(N)(s) = λe−λ(t−s)

for all 0 < s < t and (iii) P(gt(N) 6 s) = 1 if s > t. The event {gt(N) = 0} is equivalent to {Nt = 0}
whose probability is e−λt, proving (i). But gt(N) 6 t P-a.s. justifying (iii). The central point is to notice
that the stochastic clock synchronizes to the real clock at each jump. When t > s, the event {gt(N) 6 s}
is equivalent to say that no synchronization took place after s, i.e. {Nt = Ns}, whose probability is
P(Nt−s = 0) = e−λ(t−s). Hence, gt(N) has a mixed distribution: it is zero for s < 0 and s > t, has a
probability mass of e−λt at s = 0, and a density part of λe−λ(t−s) for s ∈ (0, t]; the proof is complete.

3.1.2 Brownian Lazy clock

Another simple example is given by the last passage time of a Brownian motion to zero2, i.e. (g0
t (W ), t >

0). The initial value of the process is g0
0(W ) = 0 and the density of g0

t (W ) is given by the Lévy’s arcsine
law (see e.g. [8] p.230):

fg0t (W )(s) =
1

π
√
s(t− s)

, 0 < s < t (9)

and zero otherwise. It is also possible to consider several extensions, like the last passage time of W at
an affine barrier, g̃t(W ) := sup{s 6 t ; Ws = a + bs}. The corresponding density expressed in integral
form can be found in [10] but can be further simplified with the help of the standard Normal cumulative
distribution function Φ and Φ′ = φ, see [7] :

2Note that the last passage time of a Brownian motion to the level zero is not clearly identified (unlike the last jump of
a Poisson process for instance). As is usual, we define it as the supremum of the passage times of W to that level, i.e. of
the supremum of the uncountable set {s 6 t,Ws = 0}, which is inline with the mathematical definition of g0t (W ) provided
in (1).
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fg̃t(W )(s) =
φ
(
a+bs√
s

)
√
s

(
2√
t− s

φ
(
b
√
t− s

)
+ 2bΦ

(
b
√
t− s

)
− b
)

, 0 < s < t . (10)

Observe that g̃t(W ) is not always well-defined. When a 6= 0 indeed, one needs to specify g̃t(W ) in
the cases where W never reaches the barrier before t. We set, as is usual, g̃0(W ) := 0. By doing so, g̃
is adapted to the natural filtration of W . In contrasts with g0

t (W ), g̃t(W ) may have a probability mass
at zero, corresponding to the probability of W not to reach the affine barrier prior to t. Suppose for
instance that a > 0. Then the event {g̃t(W ) = 0} is equivalent to the event {Ws < a + bs; ∀s ∈ (0, t]},
itself equivalent to {maxs∈(0,t]{Ws − bs} < a}. Hence, the probability mass of g̃t(W ) at 0 corresponds
to the probability for a Brownian motion with drift −b to stay below the threshold a, which is known to
be (see e.g. [12] Corollary 7.2.2)

P(g̃t(W ) = 0) = Φ

(
a+ bt√

t

)
− e−2ab Φ

(
−a+ bt√

t

)
.

Observe that this probability vanishes when a = b = 0. Hence, one can use g0(W ) or g̃(W ) as a lazy
clock, depending on whether we want P(θt = 0) to be zero or strictly positive for t > 0.
The moments of g̃t(W ), k ∈ {1, 2, . . .} read

E
[
(g̃t(W ))

k
]

=
e−ab

π

∫ t

0

e−
b2

2 u

∫ u

0

((
k − 1

2

)
sk−

3
2 +

a2

2
sk−

5
2

)
e−

a2

2s
ds√
u− s

du (11)

which, in the a = 0 case, simplifies to

E
[
(g̃t(W ))

k
]

=
Γ
(
k + 1

2

)
√
π(k − 1)!

∫ t

0

uk−1 e−
b2

2 u du . (12)

3.1.3 Bessel lazy clock

Lemma 7. Let R denote a Bessel process with index ν ∈ (−1, 0) started from 0. The probability density
of the lazy clock g0

t (R) = sup{s 6 t; Rs = 0} is given, for 0 < s < t, by the generalized Arcsine law :

fg0t (R)(s) =
1

Γ(|ν|)Γ(1 + ν)
(t− s)νs−1−ν .

Its moments are given via the representation of Beta functions :

E
[(
g0
t (R)

)k]
=

Γ(k − ν)

Γ(k + 1)Γ(|ν|)
tk , k ∈ {1, 2, . . .} (13)

Note that this lazy clock is 1-self similar.

Proof. We have, using the Markov property and applying Fubini (see [3]) :

P(g0
t (R) 6 s) = E [PXz (T0 > t− s)]

=

∫ +∞

0

2ν

y2νΓ(|ν|)

(∫ +∞

t−s
uν−1e−

y2

2u du

)
y2ν+1

2νsν+1Γ(ν + 1)
e−

y2

2s dy

=
1

Γ(|ν|)Γ(ν + 1)

∫ +∞

t−s

uνs−ν

u+ s
du

=
1

Γ(|ν|)Γ(ν + 1)

∫ +∞

t
s−1

rν

r + 1
dr

after the change of variable u = rs. The result then follows by differentiation.
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3.2 Time-changed martingales with lazy clocks

In this section we consider a martingale Z̃ whose time is changed with an independent lazy clock to
obtain a PWC martingale Z. We first show that (in most situations) the lazy clock is adapted to the
filtration generated by Z. This is done by observing that the knowledge of θ amounts to the knowledge
of its jump times, since the size of the jumps are always obtained as a difference with the calendar time.
In particular, the properties of the lazy clock allow one to reconstruct the trajectories of Z on [0, t] only
from past values of Z̃ and θ; no information about the future (measured according to the real clock)
is required. We then provide the resulting distribution when the clock g(N) is governed by Poisson,
inhomogeneous Poisson or Cox processes.

Lemma 8. Let Z̃ be a stochastic process independent from the lazy clock θ and assume that ∀u 6=
v, P(Z̃u = Z̃v) = 0. Then, θ is adapted to the filtration (FZt , t > 0).

Proof. Observe first that the countable union

N =
⋃

s6t,θs=s

{Zs = Zs−} =
⋃

s6t,θs=s

{Z̃θs = Z̃θs− }

is of measure zero since Z̃ and θ are independent. This implies that a.s., the sample paths of θ (both
the jump times and the jump sizes) can be recovered from the sample paths of Z up to θt, hence up
to t. Indeed, the set of the jump times of θ on [0, t] is given by {s ∈ [0, t] : θs = s}. Moreover, the
“synchronization events” {θs = s} coincide with the “jump events” {Zs−Zs− > 0} so that all jump times
of θ are identified by the jumps of Z. But θ is constant between two jumps and jumps to a known value
(the calendar time) each time Z jumps, so we have the a.s. representation θt = sup{s 6 t; Zs 6= Zs−}.
This means that both θt and Z̃θt are revealed in FZθt and, in particular, Fθt ⊆ FZθt . The proof is concluded

by noting that θt 6 t, leading to FZθt ⊆ F
Z
t .

Lemma 9. Let Z̃ be a martingale and N an independent Poisson process with intensity λ. Then
Zt := Z̃gt(N) is a PWC martingale with same range as Z̃. Its cumulative distribution function is given
by :

FZt(z) = P(Zt 6 z) = e−λt
(

1{Z06z} + λ

∫ t

0

FZ̃u(z)eλudu

)
(14)

Proof. This result is obvious from the independence assumption between Z̃ and N (i.e. θ = g(N)),

FZt(z) =

∫ ∞
0

FZ̃u(z)P(θt ∈ du) . (15)

A similar result applies to the inhomogeneous Poisson and Cox cases. The proofs are very similar.

Corollary 1. Let N be an inhomogeneous Poisson processes, with (deterministic) intensity (λ(u), u ∈
[0, T ]) and Λ(t) =

∫ t
0
λ(u)du. Then we have :

FZt(z) = e−Λ(t)

(
1{Z06z} +

∫ t

0

λ(u)FZ̃u(z)eΛ(u)du

)
(16)

In the case where N is an inhomogeneous Poisson process with stochastic intensity (i.e. Cox process)
independent from Z̃,

FZt(z) =

(
1{Z06z}P (0, t) +

∫ t

0

FZ̃s(z)dsP (s, t)

)
, (17)

where we have set P (s, t) := E[e−(Λt−Λs)] with Λt :=
∫ t

0
λudu the integrated intensity process.

Proof. We start from the inhomogeneous Poisson case, set as hazard rate function λ(u) for all u ∈ [0, T ]
a sample path λu(ω) of the stochastic intensity and take the expectation, which amounts to replace λ(u)
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by λu (hence Λ(u) by Λu) and take the expected value of the resulting cumulative distribution function
derived above with respect to the intensity paths:

FZt(z) = E [E [P(Zt 6 z)|λ(u) = λu, 0 6 u 6 t]] (18)

= 1{Z06z} E
[
e−Λt

]
+ E

[∫ t

0

λsFZ̃s(z)e
−(Λt−Λs)ds

]
(19)

= 1{Z06z}P (0, t) +

∫ t

0

FZ̃s(z)E
[
λse
−(Λt−Λs)

]
ds (20)

where in the last equality we have used Tonelli’s theorem to exchange the integral and expectation
operators when applied to non-negative functions as well as independence between λ and Z̃.
From Leibniz rule, λse

−(Λt−Λs) = d
dse
−(Λt−Λs) so

E
[
λse
−(Λt−Λs)

]
=

d

ds
E
[
e−(Λt−Λs)

]
=

d

ds
P (s, t) . (21)

Remark 3. Notice that P (s, t) does not correspond to the expectation of e−
∫ t
s
λudu conditional upon Fs,

the filtration generated by λ up to s as often the case e.g. in mathematical finance. It is an unconditional
expectation that can be evaluated with the help of the tower law. In the specific case where λ is an

affine process for example, E
[
e−

∫ t
s
λudu|λs = x

]
takes the form A(s, t)e−B(s,t)x for some deterministic

functions A, B so that

P (s, t) = E
[
e−

∫ t
s
λudu

]
= E

[
E
[
A(s, t)e−B(s,t)λs

]]
= A(s, t)ϕλs(iB(s, t)) .

Example 5. In the case λ follows a CIR process, dλt = k(θ − λt)dt+ σ
√
λtdWt with λ0 > 0 then λs ∼

rs/cs with cs = ν/(θ(1− e−ks)) and rs is a non-central chi-squared random variable with non-centrality
parameter ν = 4kθ/σ2 and κ = csλ0e

−ks the degrees of freedom. So, ϕλs(u) = E[ei(u/cs)rs ] = ϕrs(u/cs)

where ϕrs(v) = 1
(1−2iv)κ/2

exp
(

νiv
1−2iv

)
.

3.3 Some Lazy martingales without independence assumption

We have seen that when Z̃ is a martingale and θ an independent lazy clock, then (Zt = Z̃θt , t > 0) is a
PWC martingale. We now give an example where the lazy time-change θ is not independent from the
latent process Z̃.

Proposition 4. Let B and W be two Brownian motions with correlated coefficient ρ and f a continuous
function. Define the lazy clock :

gft (W ) := sup{s 6 t, Ws = f(s)} .

Let h(W ) be a progressively measurable process with respect to W and assume that there exists a deter-
ministic function ψ such that : ∫ gft (W )

0

hu(W )dWu = ψ(gft (W )) .

Then, the process Zt := Z̃gft (W ) where Z̃t :=
∫ t

0
hu(W )dBu − ρψ(t)is a PWC martingale.

Proof. Let W⊥ be a Brownian motion independent from W such that B = ρW +
√

1− ρ2W⊥. The
time-change yields :∫ gft (W )

0

hu(W )dBu − ρψ(gft (W )) =

∫ gft (W )

0

hu(W )dBu − ρ
∫ gft (W )

0

hu(W )dWu

=
√

1− ρ2

∫ gft (W )

0

hu(B)dW⊥u

=
√

1− ρ2W⊥∫ gft (W )

0 h2
u(B)du

11



which is a PWC martingale since gf (W ) and h(B) are independent from W⊥.

It is interesting to point out here that the latent process Z̃ is, in general, not a martingale (not even
a local martingale). It becomes a martingale thanks to the lazy time-change.

Example 6. We give below several examples of application of this proposition.

1. Take hu = 1. Then, ψ = f and
(
Bgft (W ) − ρf(gft (W )), t > 0

)
is a PWC martingale.

More generally, we may observe from the proof above that if H is a space-time harmonic function

(i.e. (t, z)→ H(t, z) is C1,2 and such that ∂H
∂t + 1

2
∂2H
∂z2 = 0), then the process(

H
(
Bgft (W ) − ρf(gft (W )), (1− ρ2)gft (W )

)
, t > 0

)
is a PWC martingale.

2. Following the same idea, take hu(W ) = ∂H
∂z (Wu, u) for some harmonic function H. Then

∫ gft (W )

0

∂H

∂z
(Wu, u)dWu = H

(
Wgft (W ), g

f
t (W )

)
−H(0, 0) = H

(
f(gft (W )), gft (W )

)
−H(0, 0)

and the process
(∫ gft (W )

0
∂H
∂z (Wu, u)dBu − ρH

(
f(gft (W )), gft (W )

)
, t > 0

)
is a PWC martingale.

3. As a last example, take f = 0 and hu = r(L0
u) where r is a C1 function and L0 denotes the local

time of W at 0. Then, integrating by parts :∫ gft (W )

0

r(L0
u)dWu = r(L0

gft (W )
)Wgft (W ) −

∫ gft (W )

0

Wur
′(L0

u)dL0
u = 0

since the support of dL0 is included in {u,Wu = 0}. Therefore, the process
(∫ gft (W )

0
r(L0

u)dBu, t > 0
)

is a PWC martingale.

4 Numerical simulations

In this section, we briefly sketch the construction schemes to sample paths of the lazy clocks discussed
above. These procedures have been used to generate Fig. 1. Finally, we illustrate sample paths and
distributions of a specific martingale in [0, 1] time-changed with a Poisson lazy clock.

4.1 Sampling of lazy clock and lazy martingales

By definition, the number of jumps of a lazy clock θ on [0, T ] is countable, but may be infinite. Therefore,
except in some specific cases (such as the Poisson lazy clock), an exact simulation is impossible. Using
a discretization grid, the simulated trajectories of a lazy clock θ on [0, T ] will take the form

θt := sup{τi, τi 6 t}

where τ0 := 0 and τ1, τ2, . . . are (some of) the synchronization times of the lazy clock up to time T . We
can thus focus on the sampling times τ1, τ2 . . . whose values are no greater than T .

Poisson lazy clock

Trajectories of a Poisson lazy clock θt(ω) = gt(N(ω)) on a fixed interval [0, T ] are very easy to obtain
thanks to the properties of Poisson jump times.

12



Algorithm 1 (Sampling of a Poisson lazy clock).

1. Draw a sample n = NT (ω) for the number of jump times of N up to T : NT ∼ Poi(λT ).

2. Draw n i.i.d. samples from a standard uniform (0, 1) random variable ui = Ui(ω),
i ∈ {1, 2, . . . , n} sorted in increasing order u(1) 6 u(2) 6 . . . 6 u(n).

3. Set τi := Tu(i) for i ∈ {1, 2, . . . , n}.

Brownian lazy clock

Sampling a trajectory for a Brownian lazy clock requires the last zero of a Brownian bridge. This is the
purpose of the following lemma.

Lemma 10. Let W x,y,t be a Brownian bridge on [0, t] , t 6 T , starting at W x,y,t
0 = x and ending

W x,y,t
t = y, and define its last passage time at 0 :

gt(W
x,y,t) := sup{s 6 t, W x,y,t

s = 0}.

Then, the cumulative distribution function F (x, y, t; s) of gt(W
x,y,t) is given, for s ∈ [0, t] by :

P(gt(W
x,y,t) 6 s) = F (x, y, t; s) := 1− e−

xy
t (d+(x, y, t; s) + d−(x, y, t; s)) , (22)

where d±(x, y, t; s) := e
±|xy|
t Φ

(
∓|x|

√
t− s
st
− |y|

√
s

t(t− s)

)
. (23)

In particular, the probability that W x,y,t does not hit 0 during [0, t] equals:

P(gt(W
x,y,t) = 0) = F (x, y, t; 0) = 1− e−

xy+|xy|
t .

Note also the special case when y = 0 :

P(gt(W
x,0,t) = t) = 1.

Proof. Using time reversion and the absolute continuity formula of the Brownian bridge with respect to
the free Brownian motion (see Salminen [11]), the density of gt(W

x,y,t) is given, for y 6= 0, by :

P(gt(W
x,y,t) ∈ ds) =

|y|
√
t√

2π
e

(y−x)2
2t

1√
s(t− s)3/2

e−
x2

2s e−
y2

2(t−s) ds.

Integrating over [0, t], we first deduce that

|y|
√
t√

2π

∫ t

0

e−
x2

2s

√
s

e−
y2

2(t−s)

(t− s)3/2
ds = exp

(
(|y|+ |x|)2

2t

)
. (24)

We shall now compute a modified Laplace transform of F , and then invert it. Integrating by parts and
using (24), we deduce that :

λ

∫ t

0

e−
λ
2s

2s2
F (x, y, t; s)ds = e−

λ
2t − e− λ

2t exp

(
−xy
t
− |y|

√
λ+ x2

t

)
.

Observe next that by a change of variable :

λ

∫ t

0

e−
λ
2s

2s2
F (x, y, t; s)ds = λe−

λ
2t

∫ +∞

0

e−λvF

(
x, y, t;

1

2v + 1/t

)
dv

hence ∫ +∞

0

e−λvF

(
x, y, t;

1

2v + 1/t

)
dv =

1

λ
− 1

λ
exp

(
−xy
t
− |y|

√
λ+ x2

t

)
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and the result follows by inverting this Laplace transform thanks to the formulae, for a > 0 and b > 0 :

1

λ
exp

(
−a
√
λ+ x2

)
=

a

2
√
π

∫ +∞

0

e−λv
∫ v

0

e−ux
2 1

u3/2
e−

a2

4u du dv

and ∫ z

0

e−au−b/u
du

u3/2
=

√
π

2
√
b

(
e2
√
abErfc

(√
b

z
−
√
az

)
+ e−2

√
abErfc

(√
b

z
+
√
az

))
.

Simulating a continuous trajectory of a Brownian lazy clock θ in a perfect way is an impossible task.
The reason is that when a Brownian motion reaches zero at a specific time say s, it does so infinitely
many times on (s, s+ε] for all ε > 0. Consequently, it is impossible to depict such trajectories in a perfect
way. Just like for the Brownian motion, one could only hope to sample trajectories on a discrete time
grid, where the maximum stepsize provides some control about the approximation, and corresponds to
a basic unit of time. By doing so, we disregard the specific jump times of θ, but focus on the supremum
of the zeroes of a Brownian motion in these intervals. To do this, we proceed as follows.

Algorithm 2 (Sampling of a Brownian lazy clock).

1. Fix a number of steps n such that time step δ = T/n corresponds to the desired time
unit.

2. Sample a Brownian motion w = W (ω) on the discrete grid [0, δ, 2δ, . . . , nδ].

3. In each interval ((i − 1)δ, iδ], i ∈ {1, 2, . . . , n}, draw a uniform (0, 1) random variable
ui = Ui(ω)

• If ui < F (w(i−1)δ, wiδ, δ; 0) then w does not reach 0 on the interval

• Otherwise, set the supremum gi of the last zero of w as the s-root of
F (w(i−1)δ, wiδ, δ; s)− ui

4. Identify the k intervals (1 6 k 6 n) in which w has a zero, and set τj := ijδ + gij ,
j ∈ {1, . . . , k} where ijδ is the left bound of the interval.

4.2 Example: Φ-martingale sampled with a Poisson lazy clock

We conclude this note by providing simulations of a PWC martingale in [0, 1] (as well as its probability
distribution) obtained by sampling the “so-called” Φ-martingale with a Poisson lazy clock. Lazy martin-
gales evolving in R (resp. R+) can be found in a similar way by considering a Brownian motion W (resp.
Doléans-Dade exponential E(W )) as latent process Z̃. The resulting expressions are equally tractable.

Example 7 (PWC martingale on (0, 1)). Let N be a Poisson process with intensity λ and Z̃ be the
Φ-martingale [5] with constant diffusion coefficient η,

Z̃t := Φ

(
Φ−1(Z0)eη

2/2t + η

∫ t

0

e
η2

2 (t−s)dWs

)
. (25)

where Φ denotes as before the standard Normal CDF. Then, the stochastic process Z defined as Zt :=
Z̃gt(N), t > 0, is a PWC martingale on (0, 1) with CDF

FZt(z) = e−λt

(
1{Z06z} + λ

∫ t

0

Φ

(
Φ−1(z)− Φ−1(Z0)eη

2/2u

√
eη2u − 1

)
eλudu

)
. (26)

Some sample paths for Z̃ and Z are drawn on Fig. 2. Notice that this martingale Z̃ can be simulated
without error using the exact solution.

Figure 3 gives the cumulative distribution function of Z and Z̃ where the later is a Φ-martingale.
The main differences between these two sets of curves result from the fact that P(Z̃t = Z0) = 0 for all
t > 0 while P(Zt = Z0) = P(Z̃gt(N) = Z0) = P(Nt = 0) > 0 and that there is a delay resulting from the

fact that Zt correspond to some past value of Z̃.
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Figure 2: Four sample paths of Z̃ (circles) and Z (no marker) up to T = 15 years where Z̃ is the
Φ-martingale with Z0 = 0.5.

5 Conclusion and future research

In this paper, we focused on the construction of piecewise constant martingales that is, martingales whose
trajectories are piecewise constant. Such processes are indeed good candidates to model the dynamics
of conditional expectations of random variables under partial (punctual) information. The time-changed
approach proves to be quite powerful: starting with a martingale in a given range, we obtain a PWC
martingale by using a piecewise constant time-change process. Among those time-change processes that
lazy clocks are specifically appealing: these are time-change processes staying always in arrears to the real
clock, and that synchronizes to the calendar time at some random times. This ensures that θt 6 t which
is a convenient feature when one needs to sample trajectories of the time-change process. Such random
times can typically be characterized as last passage times, and enjoy appealing tractability properties.
The last jump time of a Poisson process before the current time for instance exhibits a very simple
distribution. Other lazy clocks have been proposed as well, based on Brownian motions and Bessel
processes, some of which rule out the probability mass at zero. Finally, we provided several martingales
time-changed with lazy clocks, called lazy martingales, whose range can be any interval in R (depending
on the range of the latent martingale) and showed that the corresponding distributions can be easily
obtained from the law of iterated expectations.

Yet, tractability and even more importantly, the martingale property result from the independence
assumption between the latent martingale and the time-change process. In practice however, it might
be more realistic to consider cases where the sample frequency (synchronization rate of the lazy clock θ
to the real clock) depends on the level of the latent martingale Z. Finding a tractable model allowing
for this coupling remains an open question and is the purpose of future research.
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(a) Z0 = 50%, η = 25%, λ = 20%
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(d) Z0 = 35%, η = 25%, λ = 5%

Figure 3: Cumulative distribution function of Z̃t (circles) and Zt (no marker) where Z̃ is the Φ-martingale
with initial value Z0 and t equals 0.5 (blue solid), 5 (red, dashed) and 40 (magenta, dotted) years.
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