Unmixing multitemporal hyperspectral images with variability: an online algorithm - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Unmixing multitemporal hyperspectral images with variability: an online algorithm

Résumé

Hyperspectral unmixing consists in determining the reference spectral signatures composing a hyperspectral image and their relative abundance fractions in each pixel. In practice, the identified signatures may be affected by a significant spectral variability resulting for instance from the temporal evolution of the imaged scene. This phenomenon can be accounted for by using a perturbed linear mixing model. This paper studies an online estimation algorithm for the parameters of this extended linear mixing model. This algorithm is of interest for the practical applications where the size of the hyper-spectral images precludes the use of batch procedures. The performance of the proposed method is evaluated on synthetic data.
Fichier principal
Vignette du fichier
thouvenin_16914.pdf (1.01 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01535952 , version 1 (09-06-2017)

Identifiants

  • HAL Id : hal-01535952 , version 1
  • OATAO : 16914

Citer

Pierre-Antoine Thouvenin, Nicolas Dobigeon, Jean-Yves Tourneret. Unmixing multitemporal hyperspectral images with variability: an online algorithm. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2016), Mar 2016, Shangai, China. pp. 3351-3355. ⟨hal-01535952⟩
97 Consultations
131 Téléchargements

Partager

More