Article Dans Une Revue Journal of Mathematical Imaging and Vision Année : 2017

Convex Histogram-Based Joint Image Segmentation with Regularized Optimal Transport Cost

Julien Rabin

Résumé

We investigate in this work a versatile convex framework for multiple image segmentation, relying on the regularized optimal mass transport theory. In this setting, several transport cost functions are considered and used to match statistical distributions of features. In practice, global multidimensional histograms are estimated from the segmented image regions and are compared to reference models that are either fixed histograms given a priori, or directly inferred in the non-supervised case. The different convex problems studied are solved efficiently using primal--dual algorithms. The proposed approach is generic and enables multiphase segmentation as well as co-segmentation of multiple images.
Fichier principal
Vignette du fichier
hal.pdf (5.56 Mo) Télécharger le fichier
Vignette du fichier
vignette.jpg (177.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Format Figure, Image
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01533657 , version 1 (22-07-2019)

Identifiants

Citer

Nicolas Papadakis, Julien Rabin. Convex Histogram-Based Joint Image Segmentation with Regularized Optimal Transport Cost. Journal of Mathematical Imaging and Vision, 2017, ⟨10.1007/s10851-017-0725-5⟩. ⟨hal-01533657⟩
200 Consultations
120 Téléchargements

Altmetric

Partager

More