Algorithms for computing the double cut and join distance on both gene order and intergenic sizes - Archive ouverte HAL Access content directly
Journal Articles Algorithms for Molecular Biology Year : 2017

Algorithms for computing the double cut and join distance on both gene order and intergenic sizes

Abstract

Background: Combinatorial works on genome rearrangements have so far ignored the influence of intergene sizes,i.e. the number of nucleotides between consecutive genes, although it was recently shown decisive for the accuracyof inference methods (Biller et al. in Genome Biol Evol 8:1427–39, 2016; Biller et al. in Beckmann A, Bienvenu L, JonoskaN, editors. Proceedings of Pursuit of the Universal-12th conference on computability in Europe, CiE 2016, Lecturenotes in computer science, vol 9709, Paris, France, June 27–July 1, 2016. Berlin: Springer, p. 35–44, 2016). In this line, wedefine a new genome rearrangement model called wDCJ, a generalization of the well-known double cut and join (orDCJ) operation that modifies both the gene order and the intergene size distribution of a genome.Results: We first provide a generic formula for the wDCJ distance between two genomes, and show that computingthis distance is strongly NP-complete. We then propose an approximation algorithm of ratio 4/3, and two exact ones:a fixed-parameter tractable (FPT) algorithm and an integer linear programming (ILP) formulation.Conclusions: We provide theoretical and empirical bounds on the expected growth of the parameter at the centerof our FPT and ILP algorithms, assuming a probabilistic model of evolution under wDCJ, which shows that both thesealgorithms should run reasonably fast in practice.
Fichier principal
Vignette du fichier
Fertin_et_al_AMB2017.pdf (1.98 Mo) Télécharger le fichier
Origin Publisher files allowed on an open archive
Loading...

Dates and versions

hal-01533200 , version 1 (06-06-2017)

Identifiers

Cite

Guillaume Fertin, Géraldine Jean, Eric Tannier. Algorithms for computing the double cut and join distance on both gene order and intergenic sizes. Algorithms for Molecular Biology, 2017, 12, 16 (11 p.). ⟨10.1186/s13015-017-0107-y⟩. ⟨hal-01533200⟩
497 View
131 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More