Analysis of the edge finite element approximation of the Maxwell equations with low regularity solutions
Résumé
We derive H(curl)-error estimates and improved L 2-error estimates for the Maxwell equations. These estimates only invoke the expected regularity pickup of the exact solution in the scale of the Sobolev spaces, which is typically lower than 1 2 and can be arbitrarily close to 0 when the material properties are heterogeneous. The key tools for the analysis are commuting quasi-interpolation operators in H(curl)-and H(div)-conforming finite element spaces and, most crucially, newly-devised quasi-interpolation operators delivering optimal estimates on the decay rate of the best-approximation error for functions with Sobolev regularity index arbitrarily close to 0. The proposed analysis entirely bypasses the technique known in the literature as the discrete compactness argument.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...