Thin front limit of an integro–differential Fisher–KPP equation with fat–tailed kernels - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Thin front limit of an integro–differential Fisher–KPP equation with fat–tailed kernels

Résumé

We study the asymptotic behavior of solutions to a monostable integro-differential Fisher-KPP equation , that is where the standard Laplacian is replaced by a convolution term, when the dispersal kernel is fat-tailed. We focus on two different regimes. Firstly, we study the long time/long range scaling limit by introducing a relevant rescaling in space and time and prove a sharp bound on the (super-linear) spreading rate in the Hamilton-Jacobi sense by means of sub-and super-solutions. Secondly, we investigate a long time/small mutation regime for which, after identifying a relevant rescaling for the size of mutations, we derive a Hamilton-Jacobi limit.
Fichier principal
Vignette du fichier
Articlev5.pdf (965.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01528812 , version 1 (30-05-2017)
hal-01528812 , version 2 (18-04-2018)

Identifiants

Citer

Emeric Bouin, Jimmy Garnier, Christopher Henderson, Florian Patout. Thin front limit of an integro–differential Fisher–KPP equation with fat–tailed kernels. 2017. ⟨hal-01528812v1⟩
324 Consultations
352 Téléchargements

Altmetric

Partager

More