{KAM, $\alpha$-Gevrey regularity and the $\alpha$-Bruno-Rüssmann condition - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

{KAM, $\alpha$-Gevrey regularity and the $\alpha$-Bruno-Rüssmann condition

Résumé

We prove a new invariant torus theorem, for α-Gevrey smooth Hamiltonian systems , under an arithmetic assumption which we call the α-Bruno-Rüssmann condition , and which reduces to the classical Bruno-Rüssmann condition in the analytic category. Our proof is direct in the sense that, for analytic Hamiltonians, we avoid the use of complex extensions and, for non-analytic Hamiltonians, we do not use analytic approximation nor smoothing operators. Following Bessi, we also show that if a slightly weaker arithmetic condition is not satisfied, the invariant torus may be destroyed. Crucial to this work are new functional estimates in the Gevrey class.
Fichier principal
Vignette du fichier
KGBR3.pdf (454.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01524853 , version 1 (18-05-2017)
hal-01524853 , version 2 (19-06-2017)

Identifiants

Citer

Abed Bounemoura, Jacques Fejoz. {KAM, $\alpha$-Gevrey regularity and the $\alpha$-Bruno-Rüssmann condition. 2017. ⟨hal-01524853v1⟩
660 Consultations
210 Téléchargements

Altmetric

Partager

More