Intrusion detection in network systems through hybrid supervised and unsupervised mining process - a detailed case study on the ISCX benchmark dataset - - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Intrusion detection in network systems through hybrid supervised and unsupervised mining process - a detailed case study on the ISCX benchmark dataset -

Résumé

Data mining techniques play an increasing role in the intrusion detection by analyzing network data and classifying it as ’normal’ or ’intrusion’. In recent years, several data mining techniques such as supervised, semi-supervised and unsupervised learning are widely used to enhance the intrusion detection. This work proposes a hybrid intrusion detection (kM-RF) which outperforms in overall the alternative methods through the accuracy, detection rate, and false alarm rate. A benchmark intrusion detection dataset (ISCX) is used to evaluate the efficiency of the kM-RF, and a deep analysis is conducted to study the impact of the importance of each feature defined in the pre-processing step. The results show the benefits of the proposed approach.
Fichier principal
Vignette du fichier
Soheily-Khah_IntrusionDetection.pdf (1.21 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01521007 , version 1 (11-05-2017)

Identifiants

Citer

Saeid Soheily-Khah, Pierre-François Marteau, Nicolas Béchet. Intrusion detection in network systems through hybrid supervised and unsupervised mining process - a detailed case study on the ISCX benchmark dataset -. 2017. ⟨hal-01521007⟩
738 Consultations
881 Téléchargements

Altmetric

Partager

More