Hybrid Isolation Forest - Application to Intrusion Detection - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Hybrid Isolation Forest - Application to Intrusion Detection

Résumé

From the identification of a drawback in the Isolation Forest (IF) algorithm that limits its use in the scope of anomaly detection, we propose two extensions that allow to firstly overcome the previously mention limitation and secondly to provide it with some supervised learning capability. The resulting Hybrid Isolation Forest (HIF) that we propose is first evaluated on a synthetic dataset to analyze the effect of the new meta-parameters that are introduced and verify that the addressed limitation of the IF algorithm is effectively overcame. We hen compare the two algorithms on the ISCX benchmark dataset, in the context of a network intrusion detection application. Our experiments show that HIF outperforms IF, but also challenges the 1-class and 2-classes SVM baselines with computational efficiency.
Fichier principal
Vignette du fichier
hif (1).pdf (2.43 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01520720 , version 1 (10-05-2017)

Identifiants

Citer

Pierre-François Marteau, Saeid Soheily-Khah, Nicolas Béchet. Hybrid Isolation Forest - Application to Intrusion Detection. 2017. ⟨hal-01520720⟩
1003 Consultations
2901 Téléchargements

Altmetric

Partager

More