The Sine-Gordon regime of the Landau-Lifshitz equation with a strong easy-plane anisotropy
Résumé
It is well-known that the dynamics of biaxial ferromagnets with a strong easy-plane anisotropy is essentially governed by the Sine-Gordon equation. In this paper, we provide a rigorous justification to this observation. More precisely, we show the convergence of the solutions to the Landau-Lifshitz equation for biaxial ferromagnets towards the solutions to the Sine-Gordon equation in the regime of a strong easy-plane anisotropy. Moreover, we
establish the sharpness of our convergence result.
This result holds for solutions to the Landau-Lifshitz equation in high order Sobolev spaces. We first provide an alternative proof for local well-posedness in this setting by introducing high order energy quantities with better symmetrization properties. We then derive the convergence from the consistency of the Landau-Lifshitz equation with the Sine-Gordon equation by using well-tailored energy estimates. As a by-product, we also obtain a further derivation of the free wave regime of the Landau-Lifshitz equation.
Fichier principal
dLG2-SG-04-05-17.pdf (820.49 Ko)
Télécharger le fichier
dLG2-SG-04-05-17.bbl (6.7 Ko)
Télécharger le fichier
dLG2-SG-04-05-17.log (25.85 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...