Lifting in Besov spaces - Archive ouverte HAL Access content directly
Journal Articles Nonlinear Analysis: Theory, Methods and Applications Year : 2019

Lifting in Besov spaces

Emmanuel Russ


Let $\Omega$ be a smooth bounded domain in ${\mathbb R}^n$ and $u$ be a measurable function on $\Omega$ such that $|u(x)|=1$ almost everywhere in $\Omega$. Assume that $u$ belongs to the $B^s_{p,q}(\Omega)$ Besov space. We investigate whether there exists a real-valued function $\varphi\in B^s_{p,q}$ such that $u=e^{i\varphi}$. This extends the corresponding study in Sobolev spaces due to Bourgain, Brezis and the first author. The analysis of this lifting problem leads us to prove some interesting new properties of Besov spaces, in particular a non restriction property when $q>p$.
Fichier principal
Vignette du fichier
lifting_besov_20190305.pdf (354.21 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01517735 , version 1 (03-05-2017)
hal-01517735 , version 2 (22-06-2017)
hal-01517735 , version 3 (08-03-2019)



Petru Mironescu, Emmanuel Russ, Yannick Sire. Lifting in Besov spaces. Nonlinear Analysis: Theory, Methods and Applications, In press, Nonlocal and fractional phenomena, ⟨10.1016/⟩. ⟨hal-01517735v3⟩
897 View
794 Download



Gmail Facebook X LinkedIn More