Convergence of the kinetic hydrostatic reconstruction scheme for the Saint Venant system with topography - Archive ouverte HAL Access content directly
Journal Articles Mathematics of Computation Year : 2021

Convergence of the kinetic hydrostatic reconstruction scheme for the Saint Venant system with topography

Abstract

We prove the convergence of the hydrostatic reconstruction scheme with kinetic numerical flux for the Saint Venant system with Lipschitz continuous topography. We use a recently derived fully discrete sharp entropy inequality with dissipation, that enables us to establish an estimate in the inverse of the square root of the space increment ∆x of the L 2 norm of the gradient of approximate solutions. By Diperna's method we conclude the strong convergence towards bounded weak entropy solutions.
Fichier principal
Vignette du fichier
kin-hydrost_conv.pdf (290.97 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01515256 , version 1 (27-04-2017)
hal-01515256 , version 2 (06-09-2019)
hal-01515256 , version 3 (04-09-2020)

Identifiers

Cite

François Bouchut, Xavier Lhébrard. Convergence of the kinetic hydrostatic reconstruction scheme for the Saint Venant system with topography. Mathematics of Computation, 2021, 90 (329), pp.1119-1153. ⟨10.1090/mcom/3600⟩. ⟨hal-01515256v3⟩
317 View
263 Download

Altmetric

Share

Gmail Facebook X LinkedIn More