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We prove the convergence of the hydrostatic reconstruction scheme with kinetic numerical flux for the Saint Venant system with continuous topography with locally integrable derivative. We use a recently derived fully discrete sharp entropy inequality with dissipation, that enables us to establish an estimate in the inverse of the square root of the space increment ∆x of the L 2 norm of the gradient of approximate solutions. By Diperna's method we conclude the strong convergence towards bounded weak entropy solutions.

Introduction and main result

We consider the Saint Venant system

∂ t h + ∂ x (hu) = 0, ∂ t (hu) + ∂ x (hu 2 + g h 2 2 ) + gh∂ x z = 0, (1.1) 
for t ≥ 0 and x ∈ R, where the unknowns are h(t, x) ≥ 0 and u(t, x) ∈ R, g > 0 is the gravity constant, and the topography z(x) is given. The system is completed with an entropy (energy) inequality

∂ t h u 2 2 + g h 2 2 + ghz + ∂ x h u 2 2 + gh 2 + ghz u ≤ 0. (1.2)
We shall denote U = (h, hu) with h ≥ 0, and

η(U) = h u 2 2 + g h 2 2 , G(U) = h u 2 2 + gh 2 u, (1.3) 
the entropy and entropy fluxes without topography.

Existence and stability results for the shallow water system have been established in [START_REF] Tartar | Compensated compactness and applications to partial differential equations[END_REF][START_REF] Diperna | Convergence of approximate solutions to conservation laws[END_REF][START_REF] Lions | Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates[END_REF][START_REF] Vasseur | Well-posedness of scalar conservation laws with singular sources[END_REF]. Concerning approximation, many schemes have been proposed, see for example [START_REF] Perthame | A kinetic scheme for the Saint Venant system with a source term[END_REF][START_REF] Audusse | A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows[END_REF][START_REF] Andrianov | Performance of numerical methods on the non-unique solution to the Riemann problem for the shallow water equations[END_REF][START_REF] Audusse | A well-balanced positivity preserving second-order scheme for Shallow Water flows on unstructured meshes[END_REF][START_REF] Berthon | A positive preserving high order VFRoe scheme for shallow water equations: a class of relaxation schemes[END_REF][START_REF] Audusse | A multilayer Saint-Venant system with mass exchanges for Shallow Water flows. Derivation and numerical validation[END_REF][START_REF] Berthon | A fully well-balanced, positive and entropysatisfying Godunov-type method for the shallow-water equations[END_REF][START_REF] Coquel | A robust and entropy-satisfying numerical scheme for fluid flows in discontinuous nozzles[END_REF][START_REF] Desveaux | Well-balanced schemes to capture non-explicit steady states: Ripa model[END_REF]. The hydrostatic reconstruction scheme and its variants [START_REF] Audusse | A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows[END_REF][START_REF] Parés | Numerical methods for nonconservative hyperbolic systems: a theoretical framework[END_REF][START_REF] Castro | Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique[END_REF][START_REF] Bouchut | A robust well-balanced scheme for multi-layer shallow water equations[END_REF][START_REF] Bouchut | A subsonic-well-balanced reconstruction scheme for shallow water flows[END_REF][START_REF] Bouchut | A multi well-balanced scheme for the shallow water MHD system with topography[END_REF] is often used, and it is the subject of the present paper. Some results concerning consistency, stability and convergence of those schemes have been obtained in [START_REF] Berthelin | Kinetic invariant domains and relaxation limit from a BGK model to isentropic gas dynamics[END_REF][START_REF] Berthelin | Relaxation to isentropic gas dynamics for a BGK system with single kinetic entropy[END_REF][START_REF] Bouchut | Entropy satisfying flux vector splittings and kinetic BGK models[END_REF][START_REF] Perthame | Convergence of the upwind interface source method for hyperbolic conservation laws[END_REF][START_REF] Berthelin | Convergence of flux vector splitting schemes with single entropy inequality for hyperbolic systems of conservation laws[END_REF][START_REF] Amadori | Transient L1 error estimates for well-balanced schemes on non-resonant scalar balance laws[END_REF][START_REF] Amadori | Stringent error estimates for one-dimensional, space-dependent 2×2 relaxation systems[END_REF].

In this paper we prove the convergence of the hydrostatic reconstruction scheme [START_REF] Audusse | A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows[END_REF] with kinetic flux [START_REF] Perthame | A kinetic scheme for the Saint Venant system with a source term[END_REF].

In order to explain our approach, let us consider first the case without topography. In the (time and space continuous) kinetic BGK case and without topography, the single energy inequality ensures the convergence [START_REF] Berthelin | Relaxation to isentropic gas dynamics for a BGK system with single kinetic entropy[END_REF]. The fully-discrete case (still without topography) is treated in [START_REF] Berthelin | Convergence of flux vector splitting schemes with single entropy inequality for hyperbolic systems of conservation laws[END_REF] (a related work is [START_REF] Gosse | Convergence of relaxation schemes to the equations of elastodynamics[END_REF]). Without topography the kinetic scheme can be written as a flux-vector splitting scheme

U n+1 i = U i - ∆t ∆x F + (U i ) + F -(U i+1 ) -F + (U i-1 ) + F -(U i ) , (1.4) 
where F + , F -are defined in (1.28). The convergence result of [START_REF] Berthelin | Convergence of flux vector splitting schemes with single entropy inequality for hyperbolic systems of conservation laws[END_REF] for a scheme of the form (1.4) is established under a dissipation assumption, that F + or -F -is strictly η-dissipative. The η-dissipativity has been defined in [START_REF] Bouchut | Entropy satisfying flux vector splittings and kinetic BGK models[END_REF], and analyzed in the multi-d context in [START_REF] Bouchut | Finite difference schemes with cross derivatives correctors for multidimensional parabolic systems[END_REF]. Unfortunately this property that F + or -F -is strictly η-dissipative does not hold for the kinetic scheme. Indeed F + or -F -suffer from a lack of dissipation when the state corresponds to negative (respectively positive) kinetic speeds ξ. Nevertheless we are able to use a weaker property, which is that F + -F -is strictly η-dissipative.

When making this combination, the strict η-dissipativity corresponds to the inequality

R |ξ| H 0 (M 2 , ξ) -H 0 (M 1 , ξ) -η ′ (U 1 ) 1 ξ (M 2 -M 1 ) dξ ≥ α (η(U 2 ) -η(U 1 ) -η ′ (U 1 ) (U 2 -U 1 )) , (1.5) 
for some α > 0, where H 0 is the kinetic entropy (1.12) and M i = M(U i , ξ) with M the Maxwellian equilibrium defined in (1.9). This is rigorously stated and proved in Lemma A.3 in the appendix. We have to point out however that this estimate is only valid in a closed bounded convex set which does not contain vanishing heights, and the constant α is not obtained explicitly.

With the inequality (1.5), the convergence proof without topography is similar to that in [START_REF] Berthelin | Convergence of flux vector splitting schemes with single entropy inequality for hyperbolic systems of conservation laws[END_REF], with the additional step that one has to strengthen a bit (1.5) into an estimate in terms of (M 2 -M 1 ) 2 , as stated in Lemma A. [START_REF] Audusse | Kinetic entropy inequality and hydrostatic reconstruction scheme for the Saint-Venant system[END_REF]. This estimate is useful to take advantage of the entropy inequality

η(U n+1 i ) ≤ η(U i ) - ∆t ∆x G i+1/2 -G i-1/2 -ν β ∆t ∆x R |ξ| g 2 π 2 6 ½ ξ<0 (M i+1 + M i ) (M i+1 -M i ) 2 + ½ ξ>0 (M i + M i-1 ) (M i -M i-1 ) 2 dξ, (1.6) 
that holds under a CFL condition, where G i+1/2 is a numerical entropy flux. This entropy inequality includes a dissipation term (the integral in ξ) inherited from the kinetic nature of the scheme. This term is nonnegative and measures the space variation of the unknown U i since M i = M(U i , ξ). In order to get a priori estimates we sum up over the space and time indices i and n the previous inequality. Then we are able to use Lemma A.5, and as a consequence we get gradient estimates of the form

∂ t U ∆ L 2 tx ≤ C √ ∆x , ∂ x U ∆ L 2 tx ≤ C √ ∆x , (1.7) 
where U ∆ is the numerical approximate solution. We conclude as in [START_REF] Berthelin | Convergence of flux vector splitting schemes with single entropy inequality for hyperbolic systems of conservation laws[END_REF] by a compensated compactness argument. Indeed we recall that the compensated compactness theory [START_REF] Tartar | Compensated compactness and applications to partial differential equations[END_REF][START_REF] Lions | Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates[END_REF] gives the compactness of a bounded sequence of approximate solutions (U ε ) which satisfy that

∂ t η S (U ε ) + ∂ x G S (U ε ) is compact in H -1 loc , (1.8) 
for a sufficiently large family of entropies η S . According to the classical DiPerna approach [START_REF] Diperna | Convergence of approximate solutions to conservation laws[END_REF], the estimates (1.7) are enough to establish (1.8) for all entropies.

Then, to include the topography is not an easy task, even if it is Lipschitz continuous. Indeed a typical error term produced by the scheme, corresponding to the topography term in (1.1), is (h i+1 -h i )(z i+1 -z i )/∆x. This quantity is not small a priori, since h is not continuous. In order to make this small one would need the compactness of h, that we have to prove. A key point is to use the dissipation of the discrete form of the entropy inequality (1.2). Notice that a discrete entropy inequality that puts the topography as a source term as formulated in [START_REF] Berthon | A fully well-balanced, positive and entropysatisfying Godunov-type method for the shallow-water equations[END_REF] would not be sufficient because of the eventual presence of shocks.

Our convergence result with topography strongly uses the work [START_REF] Audusse | Kinetic entropy inequality and hydrostatic reconstruction scheme for the Saint-Venant system[END_REF], which establishes that the hydrostatic reconstruction scheme, used with the classical kinetic solver, satisfies a fully discrete entropy inequality (2.16) with dissipation but with an error term, that generalizes (1.6). However the dissipation in this inequality involves now differences (M i+1/2+ -M i+1/2-) 2 that vanish at the lake at rest steady states, instead of previously (M i+1 -M i ) 2 . Then one can simply use the triangle inequality and get (M i+1 -M i ) 2 , with further error terms in (z i+1 -z i ) 2 . Such error terms can be controled via Lemma A.1 and in particular (A.3). While doing such estimates one has to take care not getting cross terms (h i+1 -h i )(z i+1 -z i ) as mentioned above, that would not tend to zero. This is the main difficulty when taking into account the topography.

Kinetic Maxwellian equilibrium

We recall here the classical kinetic Maxwellian equilibrium, used in [START_REF] Perthame | A kinetic scheme for the Saint Venant system with a source term[END_REF] for example. It is given by

M(U, ξ) = 1 gπ 2gh -(ξ -u) 2 1/2 + , (1.9) 
where U = (h, hu), ξ ∈ R and x + ≡ max(0, x) for any x ∈ R. It satisfies the moment relations

R 1 ξ M(U, ξ)dξ = U, R ξ 2 M(U, ξ)dξ = hu 2 + g h 2 2 . (1.10)
The interest of this particular form lies in its compatibility with a kinetic entropy given by

H(f, ξ, z) = ξ 2 2 f + g 2 π 2 6 f 3 + gzf, (1.11) 
where f ≥ 0, ξ ∈ R and z ∈ R, and its version without topography

H 0 (f, ξ) = ξ 2 2 f + g 2 π 2 6 f 3 . (1.12)
Then one can check the relations

R H(M(U, ξ), ξ, z)dξ = η(U) + ghz, (1.13) R ξH(M(U, ξ), ξ, z)dξ = G(U) + ghzu, (1.14) 
where η and G are given by (1.3). Moreover, for any function f (ξ) ≥ 0, setting h = f (ξ)dξ, hu = ξf (ξ)dξ (assumed finite), one has the following entropy minimization principle [START_REF] Audusse | Kinetic entropy inequality and hydrostatic reconstruction scheme for the Saint-Venant system[END_REF],

η(U) = R H 0 (M(U, ξ), ξ)dξ ≤ R H 0 (f (ξ), ξ)dξ. (1.15)
Indeed this inequality is strongly related to the property (see (1.19) in [START_REF] Audusse | Kinetic entropy inequality and hydrostatic reconstruction scheme for the Saint-Venant system[END_REF])

∂ f H 0 M(U, ξ), ξ =        η ′ (U) 1 ξ if M(U, ξ) > 0, ≥ η ′ (U) 1 ξ if M(U, ξ) = 0. (1.16) 
Here η ′ (U) denotes the derivative of η with respect to U, η ′ (U) = (gh -u 2 /2, u).

(1.17)

Hydrostatic reconstruction and kinetic flux

We consider a uniform grid (x i+1/2 ) i∈Z with space increment ∆x = x i+1/2x i-1/2 , and discrete times t n with a constant timestep ∆t, t n+1 -t n = ∆t, t 0 = 0. We consider initial data U 0 = (h 0 , h 0 u 0 ), h 0 ≥ 0, h 0 , u 0 ∈ L ∞ (R) and a topography z(x) assumed continuous . We define the discretization of the initial data as

U 0 i = 1 ∆x x i+1/2 x i-1/2 U 0 (y)dy, (1.18) 
and z i an approximation of z(x i ), (1.19) where 

x i = x i+1/2 + x i-1/2 /2.
U n+1 i = U n i - ∆t ∆x F i+1/2--F i-1/2+ , (1.20) 
with

F i+1/2-= F(U i+1/2-, U i+1/2+ ) -S i+1/2-, (1.21) 
F i+1/2+ = F(U i+1/2-, U i+1/2+ ) + S i+1/2+ , (1.22) 
with F is a numerical flux for the system without topography. The source terms S i+1/2-, S i+1/2+ are defined by

S i+1/2-= 0 g 2 h 2 i+1/2--g 2 h 2 i , S i+1/2+ = 0 g 2 h 2 i+1 -g 2 h 2 i+1/2+ . (1.23)
The reconstructed states

U i+1/2-= (h i+1/2-, h i+1/2-u i ), U i+1/2+ = (h i+1/2+ , h i+1/2+ u i+1 ) (1.24)
are defined by

h i+1/2-= (h i + z i -z i+1/2 ) + , h i+1/2+ = (h i+1 + z i+1 -z i+1/2 ) + (1.25) and z i+1/2 = max(z i , z i+1 ). (1.26) 
The hydrostatic reconstruction scheme is defined for arbitrary numerical flux F, but in the present paper we are only able to analyze the kinetic flux vector splitting given by

F(U l , U r ) = F + (U l ) + F -(U r ), (1.27) 
F + (U) = R ξ½ ξ>0 1 ξ M(U, ξ)dξ, (1.28) 
F -(U) = R ξ½ ξ<0 1 ξ M(U, ξ)dξ,
with M(U, ξ) defined by (1.9). We consider a velocity v m ≥ 0 such that for all i, 

M(U i , ξ) > 0 ⇒ |ξ| ≤ v m . ( 1 
≤ h i -h i+1/2-≤ |z i+1 -z i | , (1.31) 0 ≤ h i -h i-1/2+ ≤ |z i -z i-1 | .
(1.32)

Convergence result

Let (U n i , z i ) be defined by the scheme (1.18)-(1.28). We define the approximate solution by

U ∆ (t, x) = 1 ∆t U n+1 i+1 -U n+1 i -U n i+1 + U n i ∆x (x -x i ) + U n+1 i -U n i (t -t n ) + U n i+1 -U n i ∆x (x -x i ) + U n i , for x i < x < x i+1 and t n ≤ t < t n+1 , (1.33) 
and we set

z ∆ (x) = z i+1 -z i ∆x (x -x i ) + z i , for x i < x < x i+1 .
(1.34)

These formulas mean that we take the continuous piecewise affine functions in space with values U i (or z i ) at x i , and then interpolate similarly in time between t n and t n+1 to get U ∆ . In this way U ∆ and z ∆ are continuous. We shall assume that z is continuous and bounded with L 1 loc derivative, and that the values z i are well chosen, so that as ∆x → 0

z ∆ -→ z locally uniformly in R, dz ∆ dx -→ dz dx in L 1 loc (R), (1.35) 
and for any bounded interval [a, b],

T V 2 [a,b] ((z i )) → 0, (1.36) 
where

T V 2 [a,b] ((z i )) is defined as T V 2 [a,b] ((z i )) ≡ [x i ,x i+1 ]⊂[a,b] (z i+1 -z i ) 2 .
(1.37)

The properties (1.35) and (1.36) hold in particular for the choice z i = z(x i ), see Lemma A.1. Moreover, for 0 < h m < h M and u M > 0, we set

U hm,h M ,u M = {(h, hu) ∈ R 2 , h m ≤ h ≤ h M , |u| ≤ u M }, (1.38) 
which is a convex set. We state now the main result of this article, which is the convergence of the hydrostatic reconstruction scheme with kinetic numerical flux.

Theorem 1.1. Let U 0 = (h 0 , h 0 u 0 ), h 0 ≥ 0, h 0 , u 0 ∈ L ∞ (R), be an initial data and let z be a continuous and bounded given topography satisfying ∂ x z ∈ L 1 loc . Define (U n i , z i ) by the scheme (1.18)-(1.28), the approximate solution U ∆ by (1.33) and the approximate topography z ∆ by (1.34). We assume that the values z i are well chosen, i.e. satisfy (1.35), (1.36). Then we assume to have uniform bounds far from the vacuum,

∀i, n, U n i ∈ U hm,h M ,u M , (1.39 
)

for some 0 < h m < h M , u M > 0, with U hm,h M ,u M defined by (1.38).
Then, under the CFL condition (1.30) and the inverse CFL condition

1 ≤ v * ∆t ∆x , (1.40) 
for some constant v * > 0, we have that up to a subsequence, U ∆ → U a.e. in (0, T ) × R and in C t ([0, T ], L ∞ w * (R)) as ∆t → 0 and ∆x → 0, where U is a weak solution to (1.1) with initial data U 0 , that satisfies the entropy inequality (1.2), and the family of entropy regularity conditions

∂ t η S (U) + ∂ x G S (U) ∈ M loc , (1.41) 
for all suitable couples entropy-entropy flux (η S , G S ). Some comments on this theorem are in order. At first, a main assumption is the boundedness away from vacuum (1.39). We are not able to treat the vacuum at the present time. Also, to have L ∞ bounds is not guaranteed a priori, since only L 2 type bounds are available, obtained by integration in time and space of the discrete entropy inequality. Indeed, L ∞ bounds can only be proved in the context of having a large family of entropy inequalities, as in [START_REF] Berthelin | Kinetic invariant domains and relaxation limit from a BGK model to isentropic gas dynamics[END_REF], while here we have only one. Note that the bound (1.29) involving v m can be seen as a consequence of the upper bounds h M , u M involved in (1.39). The inverse CFL condition (1.40) is a technical assumption that ensures the finite speed of propagation: since the information propagates of at most one cell per timestep, this condition ensures that the domain of dependency remains bounded as ∆t and ∆x tend to 0. Notice that all together, the CFL and inverse CFL conditions (1.30), (1.40) can be written

1 v * ≤ ∆t ∆x ≤ β v m ,
for some 0 < β < 1 and v * > 0. A simple way to achieve this is to take ∆t/∆x constant, stricly less than 1/v m . Another main assumption is the continuity of the topography. A discontinuous topography is not allowed, indeed in that case it is known that several severe difficulties arise, in particular one has non-uniqueness of solutions to the Riemann problem. Numerical issues in this situation of discontinuous topography are studied in [START_REF] Andrianov | Performance of numerical methods on the non-unique solution to the Riemann problem for the shallow water equations[END_REF][START_REF] Warnecke | On the solution to the riemann problem for the compressible duct flow[END_REF]. We overall assume that the topography has a locally integrable derivative, but this is a minimal assumption that enables to give sense to the product h∂ x z in (1.1).

We have to mention that the boundedness away from vacuum assumption (1.39) allows to bound also the reconstructed states U i+1/2± . Indeed according to (1.24)-(1.26) one has

h i -(z i+1 -z i ) + ≤ h i+1/2-≤ h i , h i+1 -(z i -z i+1 ) + ≤ h i+1/2+ ≤ h i+1 , (1.42) thus U i+1/2± ∈ U hm,hM ,u M , where hm is such that 0 < hm ≤ h m -sup i |z i+1 -z i |, (1.43) 
which is possible since sup i |z i+1 -z i | → 0 and thus it is lower than h m for ∆x small enough.

The outline of the remainder of the paper is as follows. In Section 2 we establish estimates on the gradient of the approximate solution as stated in (1.7). In Section 3 we prove some interpolation estimates. In Section 4 we finally prove Theorem 1.1. We obtain (1.8) by combining the gradient estimate and the interpolation estimate, then we apply compensated compactness. An appendix is devoted to the proof of various technical lemmas.

Estimate of the gradient of the approximate solution

This section is devoted to the proof of the following estimate on the approximate solution.

Proposition 2.1. With the assumptions of Theorem 1.1, we define for all U = (h, hu),

|U| 2 = h 2 + u 2 h 2 gh M . (2.1) Let N ∈ N * , T = N∆t, i 0 , i 1 ∈ Z such that i 0 ≤ i 1 .
For all i ≤ j ∈ Z, we define the interval

I v * i,j = (x i-1/2 -v * T, x j+1/2 + v * T ). (2.2)
Then there exists some constants

C 1 , C 2 , C 3 such that N n=0 i 1 -1 i=i 0 ∆t|U n i+1 -U n i | 2 ≤ C 1 , (2.3) 
N -1 n=0 i 1 i=i 0 ∆t|U n+1 i -U n i | 2 ≤ C 1 ∆t 2 ∆x 2 v 2 m , (2.4) 
T 0

x i 1 +1/2 x i 0 -1/2 |∂ x U ∆ | 2 dxdt 1/2 ≤ C 2 √ ∆x , (2.5) 
T 0

x i 1 +1/2 x i 0 -1/2 |∂ t U ∆ | 2 dxdt 1/2 ≤ C 3 √ ∆x . (2.6) The constants C 1 , C 2 , C 3 depend only on g, h m , h M , u M , v m , β, the final time T , z L ∞ , T V 2 I v * i 0 ,i 1 ((z i )), η(U 0 ) L 1 (I v * i 0 ,i 1
) and h 0

L 1 (I v * i 0 ,i 1
) .

The proof of this proposition is given below in the remainder of this section. These estimates on ∂ t U ∆ and ∂ x U ∆ use recent results on discrete kinetic inequalities established in [START_REF] Audusse | Kinetic entropy inequality and hydrostatic reconstruction scheme for the Saint-Venant system[END_REF]. In Subsection 2.3 we use several technical lemmas which are put in the appendix for the sake of clarity of the presentation.

Estimate of bounded propagation for the space integral of the height

We here establish some bound on i 1 i=i 0 ∆xh N i . We have

h n+1 i = h n i - ∆t ∆x F h i+1/2 -F h i-1/2 , (2.7) 
with

F h i+1/2 = R ξ½ ξ>0 M(U n i+1/2-, ξ)dξ + R ξ½ ξ<0 M(U n i+1/2+ , ξ)dξ. (2.8)
We recall that under the CFL condition (1.30) one has h n+1 i ≥ 0, see [START_REF] Audusse | Kinetic entropy inequality and hydrostatic reconstruction scheme for the Saint-Venant system[END_REF]. We multiply by ∆x and sum over index i and we obtain

i 1 i=i 0 ∆xh n+1 i = i 1 i=i 0 ∆xh n i -∆t F h i 1 +1/2 -F h i 0 -1/2 .
(2.9)

Then we notice that with (1.29) and (1.42)

-F h i 1 +1/2 ≤ v m h n i 1 +1/2+ ≤ v m h n i 1 +1 , F h i 0 -1/2 ≤ v m h n i 0 -1/2-≤ v m h n i 0 -1 .
(2.10) With the CFL condition (1.30) we obtain

i 1 i=i 0 ∆xh n+1 i ≤ i 1 +1 i=i 0 -1 ∆xh n i . (2.11) 
Denoting T = N∆t, using the previous inequality and (1.18) we get

i 1 i=i 0 ∆xh N i ≤ i 1 +N i=i 0 -N ∆xh 0 i = x i 1 +N+1/2 x i 0 -N-1/2 h 0 (x)dx.
(2.12)

Moreover we have

x i 0 -N -1/2 = x i 0 -1/2 -N∆x = x i 0 -1/2 -T ∆x ∆t , (2.13) 
x i 1 +N +1/2 = x i 1 +1/2 + N∆x = x i 1 +1/2 + T ∆x ∆t . (2.14) 
Therefore using the inverse CFL condition (1.40) we get

i 1 i=i 0 ∆xh N i ≤ x i 1 +1/2 +T v * x i 0 -1/2 -T v * h 0 (x)dx = h 0 L 1 (I v * i 0 ,i 1 ) , (2.15) 
with I v * i 0 ,i 1 defined in (2.2).

From kinetic to macroscopic discrete entropy inequality

We use the notations introduced in Proposition 2.1. Under the CFL condition (1.30) we can integrate with respect to ξ the kinetic entropy inequality of [START_REF] Audusse | Kinetic entropy inequality and hydrostatic reconstruction scheme for the Saint-Venant system[END_REF]Theorem 3.6] as in [5, Corollary 3.7], and we obtain

η(U n+1 i ) + gz i h n+1 i ≤ η(U i ) + gz i h i - ∆t ∆x G i+1/2 -G i-1/2 -ν β ∆t ∆x R |ξ| g 2 π 2 6 ½ ξ<0 M i+1/2+ + M i+1/2-(M i+1/2+ -M i+1/2-) 2 + ½ ξ>0 M i-1/2+ + M i-1/2-(M i-1/2+ -M i-1/2-) 2 dξ + C β ∆t ∆x v m 2 g |z i+1 -z i | 2 + |z i -z i-1 | 2 , (2.16)
with

G i+1/2 = ξ<0 ξH(M i+1/2+ , ξ, z i+1/2 )dξ + ξ>0 ξH(M i+1/2-, ξ, z i+1/2 )dξ,
(2.17) ν β > 0 is a dissipation constant depending only on β, and C β ≥ 0 is a constant depending only on β. We use here the shorthand notation

M i ≡ M(U i , ξ), M i+1/2+ ≡ M(U i+1/2+ , ξ), M i+1/2-≡ M(U i+1/2-, ξ).
Then we follow the computations done on the height in Subsection 2.1. We multiply by ∆x, take the sum over i and obtain

i 1 i=i 0 ∆x η(U n+1 i ) + gz i h n+1 i ≤ i 1 i=i 0 ∆x (η(U i ) + gz i h i ) -∆t G i 1 +1/2 + ∆t G i 0 -1/2 -ν β ∆t i 1 -1 i=i 0 R |ξ| g 2 π 2 6 M i+1/2+ + M i+1/2-(M i+1/2+ -M i+1/2-) 2 dξ -ν β ∆t R |ξ| g 2 π 2 6 ½ ξ<0 M i 1 +1/2+ + M i 1 +1/2-(M i 1 +1/2+ -M i 1 +1/2-) 2 dξ -ν β ∆t R |ξ| g 2 π 2 6 ½ ξ>0 M i 0 -1/2+ + M i 0 -1/2-(M i 0 -1/2+ -M i 0 -1/2-) 2 dξ + 2C β ∆t 2 ∆x v 2 m g i 1 i=i 0 -1 |z i+1 -z i | 2 . (2.18)
Since z is bounded, adding if necessary a sufficiently large constant to it, we can assume that z ≥ 0. Then we notice that according to (2.17) we have

-G i 1 +1/2 ≤ v m η(U i 1 +1/2+ ) + v m gh i 1 +1/2+ z i 1 +1/2 , (2.19) 
and

G i 0 -1/2 ≤ v m η(U i 0 -1/2-) + v m gh i 0 -1/2-z i 0 -1/2 . (2.20)
According to the definitions (1.3) of η and (1.24), (1.25) of the reconstructed states, and to the inequalities (1.42), one has

η(U i+1/2+ ) + gh i+1/2+ z i+1/2 ≤ η(U i+1 ) + g h 2 i+1/2+ 2 -g h 2 i+1 2 + gh i+1/2+ z i+1/2 ≤ η(U i+1 ) + gh i+1 z i+1 .
(2.21) Indeed, to get the last inequality, we observe that since h i+1/2+ = (h i+1 + z i+1 -z i+1/2 ) + , either h i+1 + z i+1 -z i+1/2 ≤ 0, which implies that h i+1/2+ = 0 and the desired inequality, or h i+1 + z i+1 -z i+1/2 ≥ 0, which implies

g h 2 i+1/2+ 2 -g h 2 i+1 2 + gh i+1/2+ z i+1/2 ≤ gh i+1/2+ (h i+1/2+ -h i+1 + z i+1/2 ) ≤ gh i+1 z i+1 . (2.22)
Similarly to (2.21) one has 

η(U i-1/2-) + gh i-1/2-z i-1/2 ≤ η(U i-1 ) + gh i-1 z i-1 . ( 2 
-∆t G i 1 +1/2 ≤ ∆tv m η(U i 1 +1 ) + gh i 1 +1 z i 1 +1 , (2.24) 
∆t

G i 0 -1/2 ≤ ∆tv m η(U i 0 -1 ) + gh i 0 -1 z i 0 -1 . (2.25)
Neglecting in (2.18) the two boundary integrals and using (2.24),(2.25), we obtain

i 1 i=i 0 ∆x η(U n+1 i ) + gz i h n+1 i ≤ i 1 +1 i=i 0 -1 ∆x (η(U i ) + gz i h i ) -ν β ∆t i 1 -1 i=i 0 R |ξ| g 2 π 2 6 M i+1/2+ + M i+1/2-(M i+1/2+ -M i+1/2-) 2 dξ + 2C β ∆t 2 ∆x v 2 m g i 1 i=i 0 -1 |z i+1 -z i | 2 . (2.26)
Iterating (2.26) from n = N -1 to n = 0 and using that

N -1 n=0 2C β ∆t 2 ∆x v 2 m g i 1 +N i=i 0 -N |z i+1 -z i | 2 ≤ 2C β T v m ∆t ∆x v m gT V 2 [x i 0 -N ,x i 1 +N ] ((z i )), (2.27) 
and that according to (1.40) one has N∆x ≤ v * N∆t = v * T , we get

i 1 i=i 0 ∆x η(U N i ) + gz i h N i + ν β N -1 n=0 ∆t i 1 -1 i=i 0 R |ξ| g 2 π 2 6 M n i+1/2+ + M n i+1/2-(M n i+1/2+ -M n i+1/2-) 2 dξ ≤ i 1 +N i=i 0 -N ∆x η(U 0 i ) + gz i h 0 i + C T V 2 [x i 0 -v * T,x i 1 +v * T ] ((z i )), (2.28)
with C depending on g, T , β, v m . We are going to show next that the integral in the LHS of (2.28) is underestimated by a term proportionnal to N -1

n=0 i 1 -1 i=i 0 ∆t|U n i+1/2+ -U n i+1/2-| 2 .

Lower estimate of dissipation terms

We first notice that

R |ξ| g 2 π 2 6 M n i+1/2+ + M n i+1/2-(M n i+1/2+ -M n i+1/2-) 2 dξ ≥ 1 2 R |ξ| g 2 π 2 6 2M n i+1/2+ + M n i+1/2-(M n i+1/2+ -M n i+1/2-) 2 dξ. (2.29)
Now according to Lemma A.5, there exists a constant C > 0 depending only on g, hm , h and

M , u M such that R |ξ| g 2 π 2 6 (2M 1 + M 2 ) (M 1 -M 2 ) 2 dξ ≥C g (h 2 -h 1 ) 2 2 + hm (u 2 -u 1 ) 2 2 (2.30) for all U 1 , U 2 ∈ U hm,hM ,u M , where M 1 = M(U 1 , ξ), M 2 = M(U 2 , ξ
U 2 = U n i+1/2-, we get R |ξ| g 2 π 2 6 M n i+1/2+ + M n i+1/2-(M n i+1/2+ -M n i+1/2-) 2 dξ ≥ C 5 |U n i+1/2+ -U n i+1/2-| 2 , (2.32) 
where C 5 > 0 depends only on g, h m , hm , h M , u M , and | • | is defined in (2.1).

Estimate of the discrete gradient

Now we use (2.32) in (2.28) and get

ν β C 5 N -1 n=0 i 1 -1 i=i 0 ∆t|U n i+1/2+ -U n i+1/2-| 2 ≤ i 1 +N i=i 0 -N ∆x η(U 0 i ) + gz i h 0 i - i 1 i=i 0 ∆x η(U N i ) + gz i h N i + C T V 2 [x i 0 -v * T,x i 1 +v * T ] ((z i )), (2.33) 
with C depending on g, T , β, v m . Next, using (1.18) we have

gz i h 0 i ≤ 1 ∆x x i+1/2 x i-1/2 g z ∞ h 0 (x) dx, (2.34) 
and by convexity of η

η(U 0 i ) ≤ 1 ∆x x i+1/2 x i-1/2 η(U 0 (x)) dx. (2.35)
Summing over i we obtain

i 1 +N i=i 0 -N ∆x η(U 0 i ) + gz i h 0 i ≤ x i 1 +N+1/2 x i 0 -N-1/2 η(U 0 (x)) + g z ∞ h 0 (x) dx.
(2.36)

We notice that

x i 0 -N -1/2 = x i 0 -1/2 -N∆x = x i 0 -1/2 -T ∆x ∆t
, and according to the finite propagation hypothesis (1.40) we deduce that

i 1 +N i=i 0 -N ∆x η(U 0 i ) + gz i h 0 i ≤ x i 1 +1/2 +v * T x i 0 -1/2 -v * T η(U 0 (x)) + g z ∞ h 0 (x) dx = η(U 0 ) L 1 (I v * i 0 ,i 1 ) + g z ∞ h 0 L 1 (I v * i 0 ,i 1 
) , (2.37) with I v * i 0 ,i 1 defined in (2.2). In addition, according to the preliminary computation (2.15) we have

- i 1 i=i 0 ∆x gz i h N i ≤ g z ∞ i 1 i=i 0 ∆xh N i ≤ g z ∞ h 0 L 1 (I v * i 0 ,i 1 
) .

(2.38) Using (2.37), (2.38) in (2.33) and noticing that η(U N i ) ≥ 0, we obtain that

N -1 n=0 i 1 -1 i=i 0 ∆t|U n i+1/2+ -U n i+1/2-| 2 ≤ C, (2.39) 
where

C depends on g, h m , hm , h M , u M , v m , β, T , z L ∞ , T V 2 I v * i 0 ,i 1 ((z i )), η(U 0 ) L 1 (I v * i 0 ,i 1 
) and h 0

L 1 (I v * i 0 ,i 1 
) . Moreover using the triangle inequality and (2.1), (1.24)-(1.26), (1.31), (1.32), we have 

|U i+1 -U i | 2 ≤3 |U i+1/2+ -U i+1/2-| 2 + |U i+1/2+ -U i+1 | 2 + |U i+1/2--U i | 2 ≤3 |U i+1/2+ -U i+1/2-| 2 + (1 + u 2 i+1 /gh M )|z i+1 -z i | 2 + (1 + u 2 i /gh M )|z i -z i-1 | 2 . ( 2 
∂ x U ∆ = t -t n ∆t U n+1 i+1 -U n+1 i -U n i+1 + U n i ∆x + U n i+1 -U n i ∆x .
(2.41)

Thus we get

t n+1 tn x i+1 x i |∂ x U ∆ | 2 dxdt ≤ ∆t ∆x |U n+1 i+1 -U n+1 i | 2 + |U n i+1 -U n i | 2 . (2.42)
In consequence, by using (2.3) we get (2.5) by summing over i and n. Similarly, from (1.33) we compute for t n ≤ t < t n+1 and

x i < x < x i+1 ∂ t U ∆ = 1 ∆t U n+1 i+1 -U n+1 i -U n i+1 + U n i ∆x (x -x i ) + U n+1 i -U n i .
(2.43) Thus

t n+1 tn x i+1 x i |∂ t U ∆ | 2 dxdt ≤ ∆x ∆t |U n+1 i+1 -U n i+1 | 2 + |U n+1 i -U n i | 2 . (2.44)
In consequence, by using (2.4) we get (2.6) by summing over i and n. This concludes the proof of Proposition 2.1.

Interpolation estimates

Before going into the proof of Theorem 1.1, we give some interpolation estimates.

Definition of interpolation functions U ∆ and F ∆

We define U ∆ (t, x) a piecewise constant function in space by

U ∆ (t, x) = U n i - t -t n ∆x F i+1/2--F i-1/2+ (3.1)
for t n ≤ t < t n+1 , x i-1/2 < x < x i+1/2 , with F i+1/2-, F i-1/2+ defined in (1.21), (1.22). We remark that for x i-1/2 < x < x i+1/2 and n = 0, . . . , N,

U ∆ (t n , x) = U n i , (3.2) 
and thus, with (1.20), U ∆ is continuous with respect to time. We also define

F ∆ (t, x) for x i-1/2 < x < x i+1/2 , t n ≤ t < t n+1 , by F ∆ (t, x) = x -x i-1/2 ∆x F + (U n i+1/2-) + F -(U n i+1/2+ ) + x i+1/2 -x ∆x F + (U n i-1/2-) + F -(U n i-1/2+ ) , (3.3) 
with F + , F -defined in (1.28), U n i+1/2-, U n i+1/2+ defined in (1.24). Then F ∆ is continuous with respect to x and we have

∀i ∈ Z F ∆ (t, x i+1/2 ) = F + (U n i+1/2-) + F -(U n i+1/2+ ) = F U n i+1/2-, U n i+1/2+ . (3.4 
) Then because of (1.21), (1.22) we have the partial differential equation

∂ t U ∆ + ∂ x F ∆ = S ∆ , (3.5) 
with S ∆ piecewise constant in time and space defined by

S ∆ (t, x) = 1 ∆x S i+1/2-+ S i-1/2+ (3.6) 
for t n ≤ t < t n+1 and x i-1/2 < x < x i+1/2 , with S i+1/2-, S i+1/2+ defined in (1.23).

Estimate of

T 0

x i 1 +1/2 x i 0 -1/2 |U ∆ -U ∆ | 2 dtdx Lemma 3.1. With the assumptions of Theorem 1.1, let N ∈ N * , T = N∆t, i 0 , i 1 ∈ Z such that i 0 ≤ i 1 .
Let U ∆ be the approximate solution (1.33) and U ∆ defined by (3.1).

Then T 0 x i 1 +1/2 x i 0 -1/2 |U ∆ -U ∆ | 2 dtdx 1/2 ≤ C √ ∆x, (3.7) with |•| defined by (2.1). The constant C depends only on g, h m , h M , u M , v m , β, T , z L ∞ , T V 2 I v * i 0 -1,i 1 +1 ((z i )), η(U 0 ) L 1 (I v * i 0 -1,i 1 +1
) and h 0

L 1 (I v * i 0 -1,i 1 +1 ) , with I v * i 0 -1,i 1 +1 defined in (2.2).
Proof. We use the definition (1.33) of U ∆ and write for all x i < x < x i+1 and

t n ≤ t < t n+1 U ∆ -U n i = 1 ∆t U n+1 i+1 -U n+1 i -U n i+1 + U n i ∆x (x -x i ) + U n+1 i -U n i (t -t n ) + U n i+1 -U n i ∆x (x -x i ). (3.8)
Using the triangle inequality, we obtain

|U ∆ -U n i | ≤ |U n+1 i+1 -U n+1 i | + |U n i+1 -U n i | + |U n+1 i -U n i |. (3.9) 
It implies also

|U ∆ -U n i+1 | ≤ |U n+1 i+1 -U n+1 i | + 2|U n i+1 -U n i | + |U n+1 i -U n i |. (3.10) 
Thus

t n+1 tn x i+1 x i U ∆ -(U n i 1 x i <x<x i+1/2 + U n i+1 1 x i+1/2 <x<x i+1 ) 2 dxdt ≤ 3∆t∆x |U n+1 i+1 -U n+1 i | 2 + 4|U n i+1 -U n i | 2 + |U n+1 i -U n i | 2 .
(3.11)

Next, we set

U 1 ∆ (t, x) = U n i , (3.12) 
for x i-1/2 < x < x i+1/2 , t n ≤ t < t n+1 . Taking the sum over n and i of (3.11) and doing translations of indices, we get

T 0 x i 1 +1/2 x i 0 -1/2 |U ∆ -U 1 ∆ | 2 dxdt ≤ 15∆x N n=0 i 1 i=i 0 -1 ∆t|U n i+1 -U n i | 2 +3∆x N -1 n=0 i 1 i=i 0 -1 ∆t|U n+1 i -U n i | 2 . (3.13)
Then we use the discrete gradient estimates (2.3), (2.4) and the CFL condition (1.30) to get

T 0 x i 1 +1/2 x i 0 -1/2 |U ∆ -U 1 ∆ | 2 dxdt ≤ C 2 ∆x, (3.14) with C 2 a constant depending on g, h m , h M , u M , v m , β, T , z L ∞ , T V 2 I v * i 0 -1,i 1 +1 ((z i )), η(U 0 ) L 1 (I v * i 0 -1,i 1 +1
) and h 0

L 1 (I v * i 0 -1,i 1 +1 ) .
Next we use the definition (3.1) of U ∆ and the definitions (1.20)-(1.23) and get for all x i-1/2 < x < x i+1/2 and t n ≤ t < t n+1

U n i -U ∆ = t -t n ∆x F + (U n i+1/2-) + F -(U n i+1/2+ ) -F + (U n i-1/2-) -F -(U n i-1/2+ ) - g 2 0 (h n i+1/2-) 2 -(h n i ) 2 + (h n i ) 2 -(h n i-1/2+ ) 2 ) , (3.15) 
with F + , F -defined in (1.28), U n i+1/2-, U n i+1/2+ defined in (1.24), h n i+1/2+ , h n i+1/2-defined in (1.25). Then, using that F + and F -are Lipschitz continuous, see (A.100) and (A.101), with the CFL condition (1.30) we obtain that there exists C 3 > 0, depending on g, h m , h M , u M and v m such that

|U n i -U ∆ | ≤C 3 |U n i+1/2--U n i-1/2-| + |U n i+1/2+ -U n i-1/2+ | + |h n i -h n i+1/2-| + |h n i -h n i-1/2+ | . (3.16)
Then using an estimate similar to (2.40) we obtain

|U n i -U ∆ | ≤ C 3 |U n i -U n i-1 | + |U n i+1 -U n i | + |z i -z i-1 | + |z i+1 -z i | . (3.17) Thus t n+1 tn x i+1/2 x i-1/2 |U n i -U ∆ | 2 dtdx ≤4C 2 3 ∆t∆x |U n i -U n i-1 | 2 + |U n i+1 -U n i | 2 + |z i -z i-1 | 2 + |z i+1 -z i | 2 . (3.18)
Taking the sum over n and i and doing translations of indices, we get

T 0 x i 1 +1/2 x i 0 -1/2 |U 1 ∆ -U ∆ | 2 dxdt ≤8C 2 3 ∆x N -1 n=0 i 1 i=i 0 -1 ∆t|U n i+1 -U n i | 2 + N -1 n=0 i 1 i=i 0 -1 ∆t|z i+1 -z i | 2 , (3.19)
with U 1 ∆ defined in (3.12). Next, using the gradient estimate (2.3) we get

T 0 x i 1 +1/2 x i 0 -1/2 |U 1 ∆ -U ∆ | 2 dxdt ≤ C 2 ∆x, (3.20) with C 2 a constant depending on g, h m , h M , u M , v m , β, T , z L ∞ , T V 2 I v * i 0 -1,i 1 +1 ((z i )), η(U 0 ) L 1 (I v * i 0 -1,i 1 +1
) and h 0 

L 1 (I v * i 0 -1,i 1 +1 ) . Finally, noticing that U ∆ -U ∆ = (U ∆ -U 1 ∆ ) + (U 1 ∆ -U ∆ ), we get T 0 x i 1 +1/2 x i 0 -1/2 |U ∆ -U ∆ | 2 dtdx ≤ 2 T 0 x i 1 +1/2 x i 0 -1/2 |U ∆ -U 1 ∆ | 2 dtdx + T 0 x i 1 +1/2 x i 0 -1/2 |U 1 ∆ -U ∆ | 2 dtdx .

Estimate of

T 0

x i 1 +1/2

x i 0 -1/2 |F (U ∆ ) -F ∆ | 2 dtdx
We will see later on that in order to prove compactness of the sequence

∂ t η(U ∆ ) + ∂ x G(U ∆ ) in H -1 loc , we need an estimate on F (U ∆ ) -F ∆ . Lemma 3.2. With the assumptions of Theorem 1.1, let N ∈ N * , T = N∆t, i 0 , i 1 ∈ Z such that i 0 ≤ i 1 .
Let U ∆ be the approximate solution (1.33) and F ∆ defined by (3.3).

Then T 0 x i 1 +1/2 x i 0 -1/2 |F (U ∆ ) -F ∆ | 2 dtdx 1/2 ≤ C √ ∆x, (3.22) with |•| defined by (2.1). The constant C depends only on g, h m , h M , u M , v m , β, T , z L ∞ , T V 2 I v * i 0 -1,i 1 +1 ((z i )), η(U 0 ) L 1 (I v * i 0 -1,i 1 +1
) and h 0

L 1 (I v * i 0 -1,i 1 +1 ) , I v * i 0 -1,i 1 +1 defined in (2.2).
Proof. We recall here (3.3)

F ∆ (t, x) = x -x i-1/2 ∆x F + (U n i+1/2-) + F -(U n i+1/2+ ) + x i+1/2 -x ∆x F + (U n i-1/2-) + F -(U n i-1/2+ ) , (3.23) 
for all x i-1/2 < x < x i+1/2 and t n ≤ t < t n+1 . Moreover, we have

F (U ∆ ) = F + (U ∆ ) + F -(U ∆ ). (3.24)
Thus, using the triangle inequality, for all x i-1/2 < x < x i+1/2 , we get

F ∆ (t, x) -F (U ∆ (t, x)) ≤ F + (U n i+1/2-) -F + (U ∆ ) + F -(U n i+1/2+ ) -F -(U ∆ ) + F + (U n i-1/2-) -F + (U ∆ ) + F -(U n i+1/2+ ) -F -(U ∆ ) . (3.25)
Then, using that F + and F -are Lipschitz continuous, see (A.100) and (A.101), we obtain that there exists C > 0, depending on g, h m , h M , u M and v m such that 

| F ∆ (t, x) -F (U ∆ )| ≤ C U n i+1/2--U ∆ + U n i+1/2+ -U ∆ + U n i-1/2--U ∆ + U n i-1/2+ -U ∆ . ( 3 
| F ∆ (t, x) -F (U ∆ )| ≤C 2 U n i -U ∆ + U n i+1 -U ∆ + U n i-1 -U ∆ + 2|z i+1 -z i | + 2|z i -z i-1 | . (3.27)
Thus we get

t n+1 tn x i+1/2 x i-1/2 | F ∆ (t, x) -F (U ∆ )| 2 dtdx ≤C 2 t n+1 tn x i+1/2 x i-1/2 |U n i -U ∆ | 2 dtdx + C 2 ∆t∆x U n i+1 -U n i 2 + U n i-1 -U n i 2 + |z i+1 -z i | 2 + |z i -z i-1 | 2 .
(3.28)

Taking the sum over n and i and doing translations of indices, we get

T 0 x i 1 +1/2 x i 0 -1/2 | F ∆ (t, x) -F (U ∆ (t, x))| 2 dxdt ≤ C 2 T 0 x i 1 +1/2 x i 0 -1/2 |U ∆ -U 1 ∆ | 2 dxdt +C 2 ∆x N -1 n=0 i 1 i=i 0 -1 ∆t|U n i+1 -U n i | 2 + N -1 n=0 i 1 i=i 0 -1 ∆t|z i+1 -z i | 2 .
(3.29)

Using the previous estimate (3.14) involving U ∆ -U 1 ∆ and the gradient estimate (2.3), we get (3.22), which concludes the proof.

4 Proof of Theorem 1.1 Using (3.5) we write

∂ t U ∆ + ∂ x F (U ∆ ) = ∂ t (U ∆ -U ∆ ) + ∂ x F (U ∆ ) -F ∆ + S ∆ , (4.1) 
with U ∆ defined in (1.33), U ∆ defined in (3.1), F ∆ defined in (3.3), and S ∆ defined in (3.6). Note that in (4.1) all terms are locally bounded functions. We multiply (4.1) by η ′ (U ∆ ) and get, for any entropy-entropy flux (η, G), the decomposition

∂ t η(U ∆ ) + ∂ x G(U ∆ ) = η ′ (U ∆ ) • ∂ t (U ∆ -U ∆ ) + η ′ (U ∆ ) • ∂ x F (U ∆ ) -F ∆ + η ′ (U ∆ ) • S ∆ ≡ R 1 + M 1 + R 2 + M 2 + η ′ (U ∆ ) • S ∆ , (4.2) 
with

R 1 = ∂ t η ′ (U ∆ ) • (U ∆ -U ∆ ) , M 1 = -η ′′ (U ∆ ) • ∂ t U ∆ • U ∆ -U ∆ , R 2 = ∂ x η ′ (U ∆ ) • F (U ∆ ) -F ∆ , M 2 = -η ′′ (U ∆ ) • ∂ x U ∆ • F (U ∆ ) -F ∆ . (4.3)
We have using (3.22)

T 0 R -R η ′ (U ∆ ) • F (U ∆ ) -F ∆ 2 dxdt ≤ η ′ (U ∆ ) 2 L ∞ ((0,T )×(-R,R)) T 0 R -R F (U ∆ ) -F ∆ 2 dxdt ≤ C R ∆x, (4.4) 
thus R 2 goes to zero in H -1 loc as ∆x → 0. Similarly, using (3.7), R 1 goes to zero in H -1 loc as ∆x → 0. Furthermore, using (2.5) and (3.22), we have

T 0 R -R |M 2 |dxdt ≤ η ′′ (U ∆ ) L ∞ |∂ x U ∆ | 2 dxdt 1/2 F (U ∆ ) -F ∆ 2 dxdt 1/2 ≤ η ′′ (U ∆ ) L ∞ C 2 √ ∆x C √ ∆x ≤ C R . (4.5) 
Thus M 2 is bounded in M loc ((0, T ) × R). Similarly, using (2.6) and (3.7), M 1 is bounded in M loc ((0, T ) × R).

Then, the definition (3.6) of S ∆ and the definitions (1.23) of S i+1/2-, S i+1/2+ yield with (1.31), (1.32) and the L 1 loc condition (1.35) that S ∆ is uniformly bounded in L 1 loc . According to (4.2) and (4.3) one has

∂ t η(U ∆ ) + ∂ x G(U ∆ ) -R 1 -R 2 = M 1 + M 2 + η ′ (U ∆ ) • S ∆ . (4.6) 
The right-hand side is bounded in

M loc ∩ W -1,p loc , ∀p, 1 < p < +∞, as a consequence it is compact in H -1 loc . At this point, we know that R 1 + R 2 and M 1 +M 2 +η ′ (U ∆ )• S ∆ are compact in H -1 loc , therefore their sum, which is equal to ∂ t η(U ∆ )+∂ x G(U ∆ ), is compact in H -1
loc . This holds for any couple entropyentropy flux (η, G). Furthermore, (U ∆ ) ∆>0 is bounded since we assume that (U n i ) i,n is a bounded sequence. We are now able to apply the compensated compactness method [START_REF] Lions | Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates[END_REF] and we get that up to a subsequence U ∆ → U a.e. and in L 1 loc,t,x as ∆t → 0 and ∆x → 0. Moreover, according to Lemma A.8,

∂ t U ∆ is bounded in L ∞ t (D ′ x ) and therefore we deduce that U ∆ → U in C t ([0, T ], L ∞
x,w * (R loc )), by the Arzelà Ascoli theorem. Then, knowing that U ∆ converges in L p loc to U, we can apply Lemma A.9, which concludes the convergence of the approximate source term S ∆ to S.

Finally we pass to the limit in (4.1) using (3.7), (3.22), which enables us to get that the limit U is a weak solution to our system (1.1). Moreover passing to the limit weakly in (2.16) using (1.36), we get (1.2). Similarly, the weak limit of (4.6) yields (1.41). This ends the proof of Theorem 1.1.

A Appendix Appendix: some technical lemmas

We prove here some technical results used throughout the paper. The notations are introduced in Section 1.

Lemma A.1. Let z i = z(x i ) for all i ∈ Z, where z ∈ C(R) satisfies ∂ x z ∈ L 1 loc (R), and (x i ) is a uniform grid of length ∆x. Then for any bounded interval [a, b], T V 2 [a,b] ((z i )) ≡ [x i ,x i+1 ]⊂[a,b] (z i+1 -z i ) 2 (A.1) verifies T V 2 [a,b] ((z i )) ≤ b a |∂ x z(x)|dx 2 , (A.2)
and

T V 2 [a,b] ((z i )) → 0 as ∆x → 0. (A.3)
Proof. We have

z i+1 -z i = z(x i+1 ) -z(x i ) = x i+1 x i ∂ x z(x)dx, (A.4) thus for [x i , x i+1 ] ⊂ [a, b] |z i+1 -z i | ≤ x i+1 x i |∂ x z(x)|dx ≤ b a |∂ x z(x)|dx. (A.5) It follows that (z i+1 -z i ) 2 ≤ x i+1 x i |∂ x z(x)|dx × b a |∂ x z(x)|dx ≤ b a |∂ x z (x)|dx 2 , (A.6) 
which proves (A.2). Next, when z is Lipschitz continuous one has

|z i+1 -z i | ≤ Lip(z)∆x, thus T V 2 [a,b] ((z i )) ≤ Lip(z) 2 ∆x(b -a) and (A.3) holds. When we have only ∂ x z ∈ L 1 loc , for any ε > 0 one can find z ε ∈ Lip(R) such that ∂ x z -∂ x z ε L 1 ([a,b]) ≤ ε,
and if follows that (A.3) also holds.

Lemma A.2. Let U k = (h k , h k u k ) for k = 1, 2 with h k ≥ 0. Then g 2 π 2 6 (2M 1 + M 2 ) (M 1 -M 2 ) 2 =H 0 (M 2 ) -H 0 (M 1 ) -η ′ (U 1 ) 1 ξ (M 2 -M 1 ) -½ (ξ-u 1 ) 2 >2gh 1 M 2 (ξ -u 1 ) 2 2 -gh 1 , (A.7)
where

M k ≡ M k (ξ) ≡ M(U k , ξ) and M(U, ξ) is defined in (1.9), H 0 (f ) ≡ H 0 (f, ξ) is defined in (1.12).
Proof. This lemma indeed gives the remainder in the inequality (1.16). Using the identity b

3 -a 3 -3a 2 (b -a) = (b + 2a)(b -a) 2 , (A.8)
one has

g 2 π 2 6 (2M 1 + M 2 ) (M 1 -M 2 ) 2 = H 0 (M 2 ) -H 0 (M 1 ) -H ′ 0 (M 1 ) (M 2 -M 1 ) , (A.9)
Proof. Note that without the factor |ξ| in (A. [START_REF] Bouchut | A subsonic-well-balanced reconstruction scheme for shallow water flows[END_REF]), the inequality would become an equality with α = 1. Thus the difficulty is to show that small values of ξ do not make a significant contribution. The idea is to make a linear combination in the variable η ′ (U) as in [14, Lemma 2.3], but the difficulty is that in this variable, the set where h ≥ 0 is not convex. This is why we have to be far from vacuum. We set

U m = (h, hu) ∈ R 2 , h ≥ h m , (A.17)
and we first deal with the case

U 1 = h 1 h 1 u 1 and U 2 = h 2 h 2 u 2 ∈ U m , such that |u 1 -u 2 | ≤ gh m .
(A.18) In this case we have

∀t ∈ [0, 1], (1 -t)η ′ (U 1 ) + tη ′ (U 2 ) ∈ η ′ ( U m ).
(A. [START_REF] Coquel | A robust and entropy-satisfying numerical scheme for fluid flows in discontinuous nozzles[END_REF] with

U m = (h, hu) ∈ R 2 , h ≥ h m 2 . (A.20)
Indeed we notice that using (1.17),

V 1 V 2 ∈ η ′ ( U m ) ⇐⇒ V 1 ≥ g h m 2 - V 2 2 2 . (A.21) Thus (A.19) is equivalent to ∀t ∈ [0, 1], ∀h 1 , h 2 ≥ h m , ∀u 1 , u 2 ∈ R, such that |u 1 -u 2 | ≤ gh m , (1 -t) gh 1 - u 2 1 2 + t gh 2 - u 2 2 2 ≥ g h m 2 - 1 2 (1 -t)u 1 + tu 2 2 . (A.22)
Thus we have to check that

∀t ∈ [0, 1], ∀u 1 , u 2 ∈ R, such that |u 1 -u 2 | ≤ gh m , (1 -t) gh m - u 2 1 2 + t gh m - u 2 2 2 ≥ g h m 2 - 1 2 (1 -t)u 1 + tu 2 2 . (A.23)
This inequality simplifies to

gh m 2 ≥ t(1 -t) 2 (u 1 -u 2 ) 2 , (A.24)
which holds true when t ∈ [0, 1] and |u 1 -u 2 | ≤ 2 √ gh m . This proves (A. [START_REF] Coquel | A robust and entropy-satisfying numerical scheme for fluid flows in discontinuous nozzles[END_REF]). According to the property (A. [START_REF] Coquel | A robust and entropy-satisfying numerical scheme for fluid flows in discontinuous nozzles[END_REF] we can now define a path v(t) ∈ U m , for 0 ≤ t ≤ 1, connecting the two states U 1 , U 2 satisfying (A.18), by

η ′ (v(t)) = (1 -t)η ′ (U 1 ) + tη ′ (U 2 ). (A.25)
Such a definition is possible because η ′ is a diffeormorphism, see (1.17). It enables us to set

φ(t) = R |ξ| H 0 (M(v(t), ξ), ξ) -H 0 (M(U 1 , ξ), ξ) -η ′ (U 1 ) 1 ξ (M(v(t), ξ) -M(U 1 , ξ)) dξ -α (η(v(t)) -η(U 1 ) -η ′ (U 1 ) (v(t) -U 1 )) . (A.26)
We notice that φ(0) = 0, and the desired inequality (A. [START_REF] Bouchut | A subsonic-well-balanced reconstruction scheme for shallow water flows[END_REF]) is equivalent to φ(1) ≥ 0. Thus it is sufficient to prove that φ is nondecreasing. Using the fact that

η ′ (U) 1 ξ = H ′ 0 (M(U, ξ), ξ
) , for all ξ ∈ R such that M(U, ξ) > 0, (A. [START_REF] Tartar | Compensated compactness and applications to partial differential equations[END_REF] we can compute

φ ′ (t) = R |ξ| (η ′ (v(t)) -η ′ (U 1 )) 1 ξ M ′ (v(t), ξ)v ′ (t)dξ -α (η ′ (v(t)) -η ′ (U 1 )) v ′ (t). (A.28)
Moreover, using that

η ′ (v(t)) -η ′ (U 1 ) = t(η ′ (U 2 ) -η ′ (U 1 )) = tη ′′ (v(t))v ′ (t), (A.29)
we get

φ ′ (t) = t R |ξ|η ′′ (v(t))v ′ (t) 1 ξ M ′ (v(t), ξ)v ′ (t)dξ -α t η ′′ (v(t))v ′ (t)v ′ (t). (A.30)
This can be rewritten as

φ ′ (t) = t R |ξ|M ′ (v(t), ξ) ⊗ η ′′ (v(t)) 1 ξ • v ′ (t) • v ′ (t)dξ -α t η ′′ (v(t)) • v ′ (t) • v ′ (t). (A.31)
Thus now it is sufficient for getting (A. [START_REF] Bouchut | A subsonic-well-balanced reconstruction scheme for shallow water flows[END_REF]) to prove that

∀U ∈ U m , ∀X ∈ R 2 R |ξ|M ′ (U, ξ) ⊗ η ′′ (U) 1 ξ • X • Xdξ ≥ α η ′′ (U) • X • X. (A.32)
For all U ∈ U m and ξ ∈ R such that M(U, ξ) > 0, we compute

η ′ (U) 1 ξ = H ′ 0 (M(U, ξ), ξ) (A.33)
and

η ′′ (U) 1 ξ = H ′′ 0 (M(U, ξ), ξ) M ′ (U, ξ). (A.34)
Moreover one can check that

H ′′ 0 (M(U, ξ)) = g 2 π 2 M(U, ξ). (A.35)
Thus we obtain

R |ξ|M ′ (U, ξ) ⊗ η ′′ (U) 1 ξ dξ =g 2 π 2 M (U,ξ)>0 |ξ| M(U, ξ) M ′ (U, ξ) ⊗ M ′ (U, ξ)dξ, (A.36)
and therefore the desired inequality (A.32) can be written

∀U ∈ U m , ∀X ∈ R 2 g 2 π 2 M (U,ξ)>0 |ξ| M(U, ξ) (M ′ (U, ξ)X) 2 dξ ≥ α η ′′ (U) • X • X. (A.37)
According to (1.17), we have

η ′ (h, q) = - 1 2 
q 2 h 2 + gh, q h , (A.38) η ′′ (h, q) = q 2 h 3 + g -q h 2 -q h 2 1 h = u 2 h + g -u h -u h 1 h . (A.39) Denoting X = x 1 x 2 , we get η ′′ (U) • X • X = g + u 2 h x 2 1 + 1 h x 2 2 - 2u h x 1 x 2 =gx 2 1 + 1 h (x 2 -ux 1 ) 2 =gx 2 1 + hx 2 3 , (A.40)
where we denote

x 3 = 1 h (x 2 -ux 1 ) . (A.41)
In order to compute M ′ (U, ξ)X, with (1.9) we compute the partial derivatives where M(U, ξ) > 0,

∂ h M(U, ξ) = 1 2gπ 2gh -(ξ -u) 2 -1/2 2g -2 u h (ξ -u) , (A.42) ∂ hu M(U, ξ) = 1 2gπ 2gh -(ξ -u) 2 -1/2 2 h (ξ -u). (A.43)
It leads to the formula (where M(U, ξ) > 0)

M ′ (U, ξ)X = M(U, ξ) -1 g 2 π 2 gx 1 + (ξ -u) h (x 2 -ux 1 ) = M(U, ξ) -1 g 2 π 2 (gx 1 + (ξ -u)x 3 ) . (A.44)
Using (A.44) in the integral of (A.37) we get

g 2 π 2 M (U,ξ)>0 |ξ| M(U, ξ) (M ′ (U, ξ)X) 2 dξ = 1 g 2 π 2 M (U,ξ)>0 |ξ| 1 M(U, ξ) (gx 1 + (ξ -u)x 3 ) 2 dξ = 1 gπ (ξ-u) 2 <2gh |ξ| 1 (2gh -(ξ -u) 2 ) 1/2 (gx 1 + (ξ -u)x 3 ) 2 dξ := I. (A.45)
As for (A.16), we notice that without the factor |ξ|, the inequality (A.37) would become an equality with α = 1 (compute the integral (A.45) without the factor |ξ|). With the factor |ξ|, we use the substitution v = ξ -u in (A.45) and the convention that if u = 0 then sgn(u) = 1, to obtain

I ≥ 1 gπ √ 2gh |v|< √ 2gh |v + u| (gx 1 + vx 3 ) 2 dv ≥ 1 gπ √ 2gh |v|< √ 2gh,sgn(v)=sgn(u) (|v| + |u|) (gx 1 + |v| sgn(u)x 3 ) 2 dv ≥ 1 gπ √ 2gh √ 2gh 0 v (gx 1 + v sgn(u)x 3 ) 2 dv ≥ 1 2gπ √ 2gh √ 2gh 2 (gx 1 + v sgn(u)x 3 ) 2 dv = √ h √ 2gπ 1 1/2 gx 1 + ξ 2gh sgn(u)x 3 2 dξ.
(A.46)

Using (1.9) and (A.60), we get

(ξ-u 1 ) 2 >2gh 1 |ξ|M(U 2 , ξ) (ξ -u 1 ) 2 2 -gh 1 dξ = √ 2 gπ supp(M 1 ) c ∩supp(M 2 ) |ξ| gh 2 - (ξ -u 2 ) 2 2 1/2 (ξ -u 1 ) 2 2 -gh 1 dξ ≤ √ 2 gπ (|u 2 | + 2gh 2 ) |supp(M 1 ) c ∩ supp(M 2 )| K 3/2 . (A.61)
Thus it is now sufficient for getting (A.57) to prove that

|supp(M 1 ) c ∩ supp(M 2 )| ≤ 4 min(gh 2 , K) √ 2gh 2 . (A.62)
We observe from (A.60) that for ξ ∈ supp(M 1 ) c ∩ supp(M 2 ) one has

P (ξ) ≤ 0, (A .63) 
where

P (ξ) ≡ gh 2 - (ξ -u 2 ) 2 2 -K. (A.64)
We notice that when ξ = u 2 , P reaches a maximum equals to gh 2 -K, and we distinguish two cases:

• If K ≥ gh 2 then |supp(M 1 ) c ∩ supp(M 2 )| ≤ |supp(M 2 )| = 2 2gh 2 , (A.65)
which concludes (A.62).

• If K < gh 2 , then the maximum of P is positive and using (A.63) we get that for ξ ∈ supp(M 1 ) c ∩ supp(M 2 ) we have

ξ ∈ u 2 -2gh 2 , r 1 r 2 , u 2 + 2gh 2 , (A.66) with r 1 < u 2 < r 2 are such that P (r 1 ) = P (r 2 ) = 0. We have u 2 - √ 2gh 2 < r 1 because P (u 2 - √ 2gh 2 ) = -K < 0, and r 2 < u 2 + √ 2gh 2 because P (u 2 + √ 2gh 2 ) = -K < 0.
This configuration is illustrated on the following picture.

for some positive constants C 1 , C 2 depending on g, h m , h M , u M such that 4 C 2 2 ≥ 1 √ ghm . These constants will be chosen further on. For data satisfying (A.78), we are going to estimate the right-hand side of (A.77). On the one hand, in order to estimate the first term in the RHS of (A.77), we apply Lemma A.3. Since 4 C 2 2 ≥ 1 √ ghm we are in the case (A.18) and we get

R |ξ| H 0 (M 2 ) -H 0 (M 1 ) -η ′ (U 1 ) 1 ξ (M 2 -M 1 ) dξ ≥α 1 (η(U 2 ) -η(U 1 ) -η ′ (U 1 ) (U 2 -U 1 )) =α 1 g (h 2 -h 1 ) 2 2 + h 2 (u 2 -u 1 ) 2 2 ≥α 1 g (h 2 -h 1 ) 2 2 + h m (u 2 -u 1 ) 2 2 , (A.79)
with α 1 = C 0 √ gh m /2π and C 0 > 0 is and absolute constant. On the other hand, in order to estimate the second term in the RHS of (A.77), we apply Lemma A.4 and obtain

(ξ-u 1 ) 2 >2gh 1 |ξ|M(U 2 , ξ) (ξ -u 1 ) 2 2 -gh 1 dξ ≤ 4 |u 2 | + √ 2gh 2 gπ √ gh 2 g|h 1 -h 2 | + (|u 2 | + 2gh 2 )|u 1 -u 2 | + 1 2 |u 2 1 -u 2 2 | 5 2 ≤ C 1 (g, h m , h M , u M ) (g|h 1 -h 2 | + C 2 (g, h m , h M , u M )|u 1 -u 2 |) 5 2 , (A.80) with C 1 (g, h m , h M , u M ) = 4 u M + √ 2gh M gπ √ gh m , (A.81) C 2 (g, h m , h M , u M ) = 2u M + 2gh M . (A.82)
Using the Jensen inequality we have for a, b ≥ 0,

(a + b) 5/2 = 2 5/2 a + b 2 5/2 ≤ 2 5/2 a 5/2 + b 5/2 2 , (A.83) we get (ξ-u 1 ) 2 >2gh 1 |ξ|M(U 2 , ξ) (ξ -u 1 ) 2 2 -gh 1 dξ ≤ 2 3/2 C 1 (g, h m , h M , u M ) g 5 2 |h 1 -h 2 | 5 2 + C 2 (g, h m , h M , u M ) 5 2 |u 1 -u 2 | 5 2 
.

(A.84) Thus, using the estimates (A.79) and (A.84) in the RHS of (A.77), we get 

R |ξ| g 2 π 2 6 (2M 1 + M 2 ) (M 1 -M 2 ) 2 dξ ≥ α 1 g (h 2 -h 1 ) 2 2 + h m (u 2 -u 1 ) 2 2 -2 3/2 C 1 g 5 2 |h 1 -h 2 | 5 2 + C 5 2 2 |u 1 -u 2 | 5 2 = α 1 g(h 2 -h 1 ) 2 2 1 -C 1 |h 1 -h 2 | 1 2 + α 1 h m (u 2 -u 1 ) 2 2 1 -C 2 |u 1 -u 2 | 1 2 , (A.85) with C 1 = 2 3/2+1 C 1 g 5 2 α 1 g , C 2 = 2 3/2+1 C 1 C 5 2 2 α 1 h m . (A.86) One can check that C 2 > (gh m ) -1/4 /
6 (2M 1 + M 2 ) (M 1 -M 2 ) 2 dξ ≥ α 1 2 g (h 2 -h 1 ) 2 2 + h m (u 2 -u 1 ) 2 2 . (A.87)
At this point we have the result (A.76) for all U 1 , U 2 ∈ U hm,h M ,u M satisfying (A.78). Thus, since the right-hand side of (A.76) is bounded, it is now sufficient to prove that We thus conclude that B is also bounded since ∂ x z ∆ is bounded in L 1 loc . Lemma A.9. With the assumptions of Theorem 1.1, let U ∆ = (h ∆ , h ∆ u ∆ ) be the approximate solution (1.33), and S ∆ be the approximate source defined by (3.6). We assume that there exists U such that U ∆ tends to U a.e. as ∆x, ∆t → 0. Then ∀φ(t, x) ∈ D(R 

∃α 3 > 0, ∀U 1 , U 2 ∈ U hm,h M ,u M such that |h 1 -h 2 | > 1 4 C 2 1 or |u 1 -u 2 | > 1 

(3. 21 )

 21 With(3.14) and (3.20) we get (3.7), which concludes the proof.

  .40) With (2.39) we get (2.3) of Proposition 2.1 (apply the inequality to the final time T + ∆t to get the sum until n = N). End of the proof of Proposition 2.1: estimate of the gradient of the approximate solution Now from (1.33) we compute for t n ≤ t < t n+1 and x i < x < x i+1

	Moreover, using (1.20), (A.100),
	(A.101) and (2.3), we get (2.4) of Proposition 2.1.
	2.5

  + M 2 ) (M 1 -M 2 ) 2 dξ ≥ α 3 . -v 2 ) 1/2 dv = gπ arcsin(v)Now from (A.96), using (A.95) and (A.97) we get (A.94), which concludes the proof.Lemma A.7. Let U k = (h k , h k u k ), k = 1, 2 with h k ≥ 0,and set for some given ν > 0. Then one has denoting|(x 1 , x 2 ) | 2 = x 2 1 + ν 2 x 2 2 , |F (U 1 ) -F (U 2 ) | ≤ 2 √ 3 √ g C 4 g(h 2 -h 1 ) 2 + min(h 1 , h 2 )(u 2 -u 1 ) 2 1 2 , -h 1 ) 2 + min(h 1 , h 2 )(u 2 -u 1 ) 2 1 2 , |F -(U 1 ) -F -(U 2 ) | ≤ 2 √ 3 √ g C 4 g(h 2 -h 1 ) 2 + min(h 1 , h 2 )(u 2 -u 1 ) 2 1 2 .Lemma A.8. With the assumptions of Theorem 1.1, let U ∆ be the approximate solution (1.33) and φ ∈ D(R). Then there exists some C > 0 depending only on the available bounds and on φ such that∀t ∈ [0, T ], < ∂ t U ∆ (t,•), φ >≤ C. (A.104) Proof. Using (2.43) we get for any t n ≤ t < t n+1 < ∂ t U ∆ , φ >= A + B, ′ > 0 a constant depending on φ. Next, from (A.107), we use (1.20) and get i+1/2 -F i-1/2 φ i+1/2 -i+1/2 φ i+1/2 -φ i+3/2 + i S i+1/2-+ S i-1/2+ φ i+1/2 .

	Using the substitution v = ξ-u √ 2gh we get
	M (U,ξ)>0 1 -1 gπ M(U, ξ) 1 √ 2gh √ B = -1 ∆x dξ = F i+1/2--F i-1/2+ ∆xφ i+1/2 , u+ √ 2gh u-√ 2gh gπ (2gh -(ξ -u) 2 ) 1/2 dξ i 2gh (1 1 -1 = gπ 2 . with φ i+1/2 := 1 = ∆x x i+1 x i φ(x)dx. Using (1.21)-(1.23) we get	(A.114) (A.97)
	B = -			i	(A.105) -S i+1/2--S i-1/2+ φ i+1/2
	with A = = -i We have and	1 ∆t	C 4 = U n+1 v∈{|u 1 |+ i+1 -U n+1 √ 2gh 1 ,|u 2 |+ max i -U n i+1 + U n √ 2gh 2} i ∆x B = i 1 ∆t U n+1 i -U n i |φ i+1/2 -φ i+3/2 | ≤ ∆xLip(φ), x i+1 x i (x -x i )φ(x)dx (A.106) 2 , (A.98) (A.115) |v| 1 + ν 2 v 2 1 x i x i+1 φ(x)dx. (A.107) (A.116)
	First we notice that
	(A.99) (A.108) C 4 g(h 2 (A.100) ψ(x)dx, x x i+1 |F + (U 1 ) -F + (U 2 ) | ≤ 2 √ x i+1 x i 3 √ g where ψ is an antiderivative of φ. Thus we get A = i 1 ∆t U n+1 i+1 -U n+1 i -U n i+1 + U n i ∆x ∆x∆ψ i+1/2 , (A.109)
	with ∆ψ i+1/2 := ψ(x i+1 ) -1 ∆x of indices we get	x i+1 x i	(A.101) ψ(x)dx. Moreover, by doing translations
	4 C 2 2 ∆ψ i-1/2 -∆ψ i+1/2 . , M(U, ξ)dξ, Proof. We recall that from (1.28), we have R |ξ| F + (U) = R ξ½ ξ>0 A = i 1 ∆t U n+1 i -U n i 1 ξ Next, using that U n i is bounded we get from (1.20) that g 2 π 2 6 (2M 1 (A.88) (A.110) F -(U) = R ξ½ ξ<0 1 ξ M(U, ξ)dξ, |U n+1 i -U n i | ≤ 2 ∆t F + (U) ∞ + F -(U) ∞ + gh 2 ∞ . (A.111) ∆x Using a reductio ad absurdum as in the proof of Lemma A.3, we suppose that (A.88) does not hold. Thus and F (U) = F + (U) + F -(U) = R ξ 1 ξ M(U, ξ)dξ. (A.102) Moreover we notice that
	∀n > 0, ∃U n 1 , U n 2 ∈ U hm,h M ,u M , such that 4 C 2 1 |h n 1 -h n 2 | + 4 C 2 2 |u n 1 -u n 2 | > 1 and R |ξ| g 2 π 2 6 (2M n 1 + M n 2 ) (M n 1 -M n 2 ) 2 dξ ≤ Thus the result is an immediate consequence of Lemma A.6 and of the fact 1 n , (A.89) (A.112) ∆ψ i-1/2 -∆ψ i+1/2 ≤ ∆x 2 Lip(φ), that ∀ξ ∈ suppM 1 ∪ suppM 2 , |ξ which enables us to get 1 ξ | ≤ C 4 . (A.103) |A| ≤ 2C∆xLip(φ)

i (x -x i )φ(x)dx = ∆xψ(x i+1 )i 1 dist(x i ,suppφ)≤∆x ≤ C ′ , (A.113) with C i F i F and |S i+1/2-+ S i-1/2+ | ≤ v 2 m (|z i+1 -z i | + |z i -z i-1 |). (A

.117) 

  Let φ(t, x) ∈ D(R 2 ). We compute the integral S ∆ (t, x)φ(t, x) dtdx =

							∆x,∆t→0	S(t, x)φ(t, x) dtdx,
							(A.118)
	with S(t, x) =	0 -gh∂ x z	.	
	Proof. ∞	∞	∆t S i+1/2-+ S i-1/2+ φ n i ,
						n=0	i=-∞
	with φ n i =	1 ∆t	1 ∆x	t n+1 tn	x i+1/2 x i-1/2	φ(t, x)dtdx. Then we perform a translation
	of the index i and get		

2 

), S ∆ (t, x)φ(t, x) dtdx -→

n i ∆t S i+1/2-+ S i-1/2+ φ n i = n ∆t i S i+1/2-φ n i + n ∆t i S i+1/2+ φ n i+1 .

where we donote H ′ 0 (f, ξ) ≡ ∂ ∂f H 0 (f, ξ). Thus we have to prove that

On the one hand we compute according to (1.17)

On the other hand we have using (1.9)

(A.12) Subtracting (A.12) to (A.11) it follows that

-gh 1 , (A. [START_REF] Bouchut | Entropy satisfying flux vector splittings and kinetic BGK models[END_REF] and therefore that

Finally we notice that

thus we get (A.10), which concludes the proof.

Lemma A.3. There exists some constant α > 0, depending only on the gravity constant g and on the constants

for all U 1 , U 2 ∈ U hm,h M ,u M defined by (1.38) and where

The last integral is a positive definite quadratic form with respect to y 1 = gx 1 and y 3 = √ 2gh sgn(u)x 3 . Thus we have for some absolute constant C 0 > 0 (one can check that C 0 = 1/(8 × 13) works)

Therefore by (A.45), (A.47) we get

Because of (A.40), this proves that (A.37) holds with α 1 = C 0 √ gh m /2π. We conclude that (A. [START_REF] Bouchut | A subsonic-well-balanced reconstruction scheme for shallow water flows[END_REF]) holds for all

Thus, to conclude the lemma it is now sufficient to prove that

(A.50) thus when (A.49) holds, we deduce (A.16). Proceeding by reductio ad absurdum, let us assume that (A.49) does not hold. Thus

where

M is a closed and bounded set, we can extract a subsequence (that we still denote U n 1 , U n 2 ) such that

We also know by (A.7) that

(A.55) and therefore we get that

This implies that M 1 = M 2 a.e. and therefore that U 1 = U 2 , in contradiction with (A.53). This concludes the proof of Lemma A.3.

Lemma A.4. One has

for all U 1 = (h 1 , h 1 u 1 ), h 1 > 0 and U 2 = (h 2 , h 2 u 2 ), h 2 > 0, where M(U, ξ) is defined in (1.9), and

Proof. We notice that for all ξ ∈ supp(M 2 ) one has |ξ| ≤ |u 2 | + √ 2gh 2 , thus we have

≥ 0 and

-gh 1 > 0, we get 

With (A.70) we deduce that

and by the same arguments we obtain that

Putting together (A.72) and (A.74), we get

With (A.67) we get (A.62) in the case K < gh 2 , and this concludes the proof of Lemma A.4.

Lemma A.5. There exists some C > 0 depending only on g, h m , h M , u M such that

), with M(U, ξ) defined by (1.9).

Let us first consider the case of data

where M n k = M(U n k , ξ). As U hm,h M ,u M is a closed and bounded set, we can extract a subsequence such that

and by Lebesgue's theorem

Therefore we get

itself implying that M 1 = M 2 a.e. and therefore U 1 = U 2 , in contradiction with (A.91). This concludes the proof of Lemma A.5.

with M(U, ξ) defined by (1.9).

Proof. Let us recall that from [START_REF] Audusse | Kinetic entropy inequality and hydrostatic reconstruction scheme for the Saint-Venant system[END_REF]Lemma 3.11] one has

(A.95)

Then using the Cauchy-Schwarz inequality,

Then we notice that |φ n i+1 -φ n i | ≤ Lip(φ)∆x and we obtain that

Next, for ∆x, |z i+1 -z i | small enough, we have on the one hand using (1.43)

On the other hand, we have similarly The convergence holds because we supposed h ∆ → h a.e., and dz ∆ dx → dz dx in L 1 loc . This concludes the proof of the lemma.