Dangerousness Metric for Gene Regulated Car Driving
Résumé
In this paper, we show how a dangerousness metric can be used to modify the input of a gene regulatory network when plugged to a virtual car. In the context of the 2015 Simulated Car Racing Championship organized during GECCO 2015, we have developed a new cartography methodology able to inform the controller of the car about the incoming complexity of the track: turns (slipperiness, angle, etc.) and bumps. We show how this dangerousness metric improves the results of our controller and outperforms other approaches on the tracks used in the competition.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...