Efficient Calculations of Faithfully Rounded l2-Norms of n-Vectors - Archive ouverte HAL
Article Dans Une Revue ACM Transactions on Mathematical Software Année : 2015

Efficient Calculations of Faithfully Rounded l2-Norms of n-Vectors

Résumé

In this paper, we present an efficient algorithm to compute the faithful rounding of the l2-norm of a floating-point vector. This means that the result is accurate to within one bit of the underlying floating-point type. This algorithm does not generate overflows or underflows spuriously, but does so when the final result indeed calls for such a numerical exception to be raised. Moreover, the algorithm is well suited for parallel implementation and vectorization. The implementation runs up to 3 times faster than the netlib version on current processors.
Fichier principal
Vignette du fichier
l2-with-bins.pdf (427.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01511120 , version 1 (20-04-2017)

Identifiants

Citer

Stef Graillat, Christoph Q. Lauter, Ping Tak Peter Tang, Naoya Yamanaka, Shin’ichi Oishi. Efficient Calculations of Faithfully Rounded l2-Norms of n-Vectors. ACM Transactions on Mathematical Software, 2015, 41 (4), pp.24:1. ⟨10.1145/2699469⟩. ⟨hal-01511120⟩
206 Consultations
1111 Téléchargements

Altmetric

Partager

More