
HAL Id: hal-01511120
https://hal.science/hal-01511120v1

Submitted on 20 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Calculations of Faithfully Rounded l2-Norms of
n-Vectors

Stef Graillat, Christoph Q. Lauter, Ping Tak Peter Tang, Naoya Yamanaka,
Shin’ichi Oishi

To cite this version:
Stef Graillat, Christoph Q. Lauter, Ping Tak Peter Tang, Naoya Yamanaka, Shin’ichi Oishi. Effi-
cient Calculations of Faithfully Rounded l2-Norms of n-Vectors. ACM Transactions on Mathematical
Software, 2015, 41 (4), pp.24:1. �10.1145/2699469�. �hal-01511120�

https://hal.science/hal-01511120v1
https://hal.archives-ouvertes.fr

A

Efficient calculations of faithfully rounded l2-norms of n-vectors

STEF GRAILLAT, Sorbonne Universités, UPMC Univ Paris 06
CHRISTOPH LAUTER, Sorbonne Universités, UPMC Univ Paris 06
PING TAK PETER TANG, Intel Corporation
NAOYA YAMANAKA, Waseda University
SHIN’ICHI OISHI, Waseda University

In this paper, we present an efficient algorithm to compute the faithful rounding of the l2-norm of a floating-
point vector. This means that the result is accurate to within one bit of the underlying floating-point type.
This algorithm does not generate overflows or underflows spuriously, but does so when the final result
indeed calls for such a numerical exception to be raised. Moreover, the algorithm is well suited for parallel
implementation and vectorization. The implementation runs up to 3 times faster than the netlib version on
current processors.

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Floating-point arithmetic, error-free transformations, faithful rounding,
2-norm, underflow, overflow

1. INTRODUCTION

Computing the l2-norm ‖x‖2 =
√∑n

j=1 x
2
j of a vector x = [x1, x2, . . . , xn]T is prevalent

in scientific and engineering applications. This operation is part of the first (lowest)
level of the Basic Linear Algebra Subroutine BLAS1. The simplicity of the formula√∑n

j=1 x
2
j is misleading. Summing the squares can cause unwarranted (spurious)

overflows or underflows in many instances when in fact ‖x‖2 is well within the nor-
mal range of the working-precision floating-point arithmetic. Common implementa-
tions such as the public version of LAPACK [Anderson et al. 1999] released by netlib1

essentially compute the l2-norm as x̂× ‖x/x̂‖2 where x̂ is maxj |xj |. That implementa-
tion requires n divisions in total, which is significantly more expensive than the naı̈ve

1www.netlib.org

Part of this work was done while Prof. Shin’ichi Oishi was holding a position of Visiting Professor at
UMPC and while Ping Tak Peter Tang was visiting UPMC. Stef Graillat was supported by a CNRS/JSPS
“Exchange Scientist” grant.

Author’s addresses: Stef Graillat, Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005,
Paris, France and CNRS, UMR 7606, LIP6, F-75005, Paris, France and secondment with CNRS at Labora-
toire LIP (CNRS, ENS Lyon, Inria, UCBL), 6 allée d’Italie 69364 Lyon cedex 07, France; Christoph Lauter is
with Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France and CNRS, UMR
7606, LIP6, F-75005, Paris, France; Ping Tak Peter Tang is with Intel Corporation, 2200 Mission College
Blvd, Santa Clara, CA 95054, USA; Naoya Yamanaka is with Faculty of Science and Engineering, Waseda
University, 3-4-1 Okubo, Tokyo 169-8555 Japan; Shin’ichi Oishi is with Faculty of Science and Engineering,
Waseda University, 3-4-1 Okubo, Tokyo 169-8555 Japan and CREST, JST
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0098-3500/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 S.Graillat et al.

formula would suggest. Spurious exceptions aside, accuracy is also an issue with im-
plementations that rely on accumulation of squares in working-precision arithmetic.
In the worst-case scenario, the last log2(n) bits of the binary floating-point result could
be corrupted. Equivalently the last log10(n) digits of the result, when displayed in dec-
imal, could be corrupted. Improving the accuracy of l2-norm computation enhances the
qualities of the larger computational tasks relying on it. Moreover, highly accurate
l2-norm improves the chances of obtaining reproducible numerical results should the
l2-norm computation be done in parallel, with threads or vector-floating-point (SIMD)
instructions2.

In this paper, we present a new division-free l2-norm algorithm that is amenable to
straightforward parallel implementations. We prove that the algorithm always returns
a faithfully rounded result, to be defined rigorously later. For now (and informally), this
means that the result is accurate to within one bit of the underlying floating-point type.
The algorithm also reports overflow and underflow faithfully, a property to be defined
later. Loosely speaking, these exceptions are triggered only when the true value ‖x‖2
calls for the event. On current processors (with AVX extensions), our implementation
runs at least as fast as the netlib version, and up to three times faster when the
IEEE754 fused-multiply-add instruction is available.

There are two main features of our algorithm. First, it accumulates the squares,
x2j , using a pair of floating-point numbers, providing essentially double the underly-
ing floating-point precision. Our technique is similar to the addition operator in the
double-double library [Li et al. 2002] but at almost twice the speed by exploiting the
nonnegative nature of sum-of-squares. We provide a rigorous analysis of the accuracy
properties of our accumulation process. Second, we eliminate all spurious exceptions
by scaling the input data but without using division. The technique is a “binning”
method and is similar to the one proposed in [Blue 1978]: the vector elements xj are
grouped, i.e. binned, into small, medium and large inputs, such that, after appropri-
ate scaling up or down, their squares in each bin can be computed without spurious
overflow or underflow. However, we improve the binning technique in that [Blue 1978]
requires three bins and we use only two bins here, resulting in economy of registers
usage and performance improvement. The accumulation and binning are amenable
to straightforward parallel implementations. Our reference implementation uses data
parallelism through SIMD instructions, but adding thread parallelism is straightfor-
ward. Our technique does not incur any memory overhead; in particular each vector
element xj is read only once, the same way it would be in other approaches.

We organize the rest of the paper as follows. Section 2 defines the key technical terms
to make our paper self contained. We formulate our main problem and state our objec-
tives. We present and establish the main theorem in Section 3. The essence is that
if ‖x‖22 is computed to enough accuracy as a floating-point pair as “leading”-plus-
“correction,” then a standard IEEE-conforming square root on the “leading” part yields
a faithfully-rounded l2-norm. Section 4 presents a serial and a parallel l2-norm algo-
rithm without binning. In the absence of exceptions, we prove the numerical properties
of these two algorithms that will lay the foundation for the actual binned algorithms
that provide the spurious-exception-free property. Section 5 presents the binned ver-
sions and the proofs of the faithful rounding and spurious-exception-free nature. Sec-
tion 6 shows numerical and performance test results to corroborate with the theoretical
analysis presented.

2Clearly, a l2-norm routine that returns the correctly rounded floating-point result is always reproducible.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Efficient calculations of faithfully rounded l2-norms of n-vectors A:3

2. BACKGROUND
Throughout this paper we consider a specific IEEE 754 binary floating-point type. Let
F denote the entire set of finite values in this type, identified by three parameters ε,
emin, and emax:

F = {±2e+1m ε | m ∈ N, emin ≤ e ≤ emax, 0 ≤ mε < 1}.
For example, (ε, emin, emax) is (2−24,−126, 127) for the binary32 format, and
(2−53,−1022, 1023) for the binary64 format. Denote the smallest and largest positive
normalized numbers by Fsmall = 2emin and Flarge = 2emax+1(1 − ε). We assume ε ≤ 2−24

throughout this paper.

Closely related to F is the set F] where no upper limit of the exponent is imposed:

F] = {±2e+1m ε | m ∈ N, emin ≤ e, 0 ≤ mε < 1}.
It is clear that F ∩ [0, 2emax+1) = F] ∩ [0, 2emax+1). In particular, numbers x ∈ F] where
0 < |x| < 2emin are also denormalized.

For any real number α ∈ R, ◦(α) is the IEEE round-to-nearest-even function that maps
any finite real number to F], ◦ : R → F]. The rounding ◦(α) of a real number α is the
number in F] that is closest to α, with a tie broken by choosing ◦(α) to have an even
mantissa (least-significant bit being zero). A crucial property of ◦(α) is best stated in
terms of the ulp (units of last place) function defined as follows. For all α ∈ R,

ulp(α) =

{
2e+1ε if |α| ∈ [2e, 2e+1), e ≥ emin,
2emin+1ε otherwise.

Note that this definition of ulp reflects the floating-point arithmetic properties in the
denormalized range. For any real number α and integer k such that both |α| and |2kα| ≥
Fsmall, then ulp(2kα) = 2kulp(α), and ulp(α) ≤ 2|α|ε where equality ulp(α) = 2|α|ε holds
if and only if log2(|α|) is an integer. It is easy to see that ◦(α) is at worst half an unit of
last place away from α: For a real number α, |α| ∈ [2e, 2e+1], then |◦(α)−α| ≤ ulp(α)/2.
Note that this holds even for e < emin.

The clipping function clip maps floating-point numbers in F] to F ∪ {−∞,+∞}: For all
x ∈ F],

clip(x) =

{
x for |x| < 2emax+1,
x
|x|∞ for |x| ≥ 2emax+1.

The four basic IEEE arithmetic operations ⊕,	,⊗,� can be defined in terms of the
rounding and clipping functions:

a~ b = clip(◦(a ∗ b))
for any ∗ ∈ {+,−,×, /} and a, b ∈ F (with b 6= 0 if the operation “∗” is division). Similarly,
the IEEE square root function sqrt is defined as sqrt(x) = ◦(

√
x) for all x ∈ F∩ [0,∞).

The clipping function is not needed here as
√
x ≤

√
Flarge.

For any α ∈ R, we define α’s faithful set of floating-point numbers ♦(α) as follows. ♦(α)
is the singleton {α} if α ∈ F]. Otherwise, ♦(α) is the set of two numbers in F] that are
closest to α from below and above. In other words,

♦(α) =

{
max
y
{y ∈ F] | y ≤ α}, min

y
{y ∈ F] | y ≥ α}

}
.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 S.Graillat et al.

Clipping the set ♦(α) is by definition the set consisting of the clipping of each of the
elements in ♦(α): clip(♦(α)) = {clip(a)|a ∈ ♦(α)}.

This paper presents a parallelizable and division-free algorithm AccuNrm2 such
that for all vectors x of practical length, AccuNrm2(x) ∈ clip(♦(‖x‖2)) where x =
[x1, x2, . . . , xn]T , xj ∈ F. We call this numerical property a faithful rounding of ‖x‖2.
Note that our definition of faithful rounding is slightly stronger than that in [Muller
et al. 2010], differing with it only in the case when ‖x‖2 ≥ 2emax+1. In this case, our
definition requires that +∞ be returned, while the definition in [Muller et al. 2010]
allows either +∞ or Flarge to be a faithful rounding.

In addition to computing a faithfully rounded numerical value, AccuNrm2(x) also re-
ports overflow and underflow faithfully in the following sense. Given an implementa-
tion G(x) of a function g(x), we say G(x) reports

(1) overflow faithfully if:
— G(x) never reports an overflow when |g(x)| ≤ Flarge.
— G(x) always reports an overflow when |g(x)| ≥ 2emax+1.

(2) underflow faithfully:
— When |g(x)| ≥ Fsmall, G(x) never reports underflow.
— When 0 < |g(x)| ≤ Fsmall − 2emin+1ε, then

— |G(x)| ≤ Fsmall − 2emin+1ε always,
— if underflow is unmasked, G(x) reports underflow.
— if underflow is masked and g(x) ∈ F, then G(x) = g(x) and does not report

underflow.

We emphasize that achieving faithful rounding is non-trivial. One can show that
◦(
√
◦(σ)) ∈ ♦(‖x‖2), where σ =

∑
j x

2
j = xTx is the exact sum of squares (or inner

product). This says the correctly rounded square root of the correctly rounded sum of
squares is a faithfully rounded l2-norm. Nevertheless, computing the correctly rounded
sums of squares is very expensive [Ogita et al. 2005; Rump et al. 2008a; 2008b]. On the
other hand, examples exist where ◦(

√
S) /∈ ♦(‖x‖2) for some S ∈ ♦(σ). That is, comput-

ing the σ to only slightly worse than the correctly rounded sum of squares can cause
unfaithful rounding. Our algorithm in essence computes a floating-point number S ≈ σ
very accurately and yet efficiently. Theorem 3.3 gives a condition on the accuracy of S
that guarantees ◦(

√
S) to be a faithful rounding of ‖x‖2. The fact ◦(

√
◦(σ)) ∈ ♦(‖x‖2)

alluded to earlier follows trivially from Theorem 3.3 as well.

The fundamental task is that of computing σ =
∑
j x

2
j accurately. As we will see later,

it is possible to transform this computation into a sum without loss of information (no
rounding error). The problem is now transformed into the accurate computation of a
sum. There is an abundant literature about floating-point summation (see [Higham
2002, chap. 4], [Knuth 1998; Ogita et al. 2005; Rump et al. 2008a; 2008b; Rump 2009;
Zhu and Hayes 2009; 2010] and references therein). For our purpose, we only need an
accurate summation algorithm whose precision is doubled because the entries are non-
negative numbers. For such a precision, a straightforward adaptation of the algorithm
Sum2 [Ogita et al. 2005] is very efficient since it requires 8(n − 1) floating-point oper-
ations (flops) where n is the size of the vector. The resulting sum has a relative error
no more than on the order of n2ε2. Another choice is to use the double-double arith-
metic presented in [Li et al. 2002]. The resulting sum is much more accurate, having a
relative error no more than 2nε2/(1 − 2nε2). The cost, however, is 20(n − 1) flops. The
difference between the two algorithms comes from the “renormalization steps” that

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Efficient calculations of faithfully rounded l2-norms of n-vectors A:5

are present in the double-double library. As will be shown later, an error bound in the
order of nε2 as opposed to n2ε2 is crucial if faithful rounding is to be guaranteed for
a general vector length n. We therefore devise an algorithm that is faster than, but of
comparable accuracy to, the addition operator in the double-double library. Instead of
performing two renormalization steps in the addition of two double-double numbers,
we perform only one renormalization step in a careful manner. The resulting error
bound is 3nε2/(1 − 3nε3), at a cost of 11(n − 1) flops, which is almost twice as fast as
20(n− 1) flops.

A naı̈ve computation of the l2-norm can cause spurious overflow and underflow. The
netlib library addresses the overflow issue but not that of underflow. Spurious un-
derflow can cause significant performance degradation. Blue’s work [Blue 1978] uses
three bins to eliminate spurious overflows and underflows. Accuracies of the netlib and
Blue algorithms are comparable, where close to log10(n) digits can be corrupted in the
worst case. In summary, our algorithm is accurate to within one binary bit, free from
spurious over/underflows, and run faster than the netlib version.

We state without proofs the following elementary facts about floating-point arithmetic.
These facts and notations will be used freely in the subsequent sections.

— Let a, b ∈ F]. The absolute error bound

|◦(a op b)− (a op b)| ≤ ulp(a op b)/2

holds for all op ∈ {+,−,×, /} (excluding division by zero). The relative error bound

◦(a op b) = (a op b)(1 + δ), |δ| ≤ ε

holds for op ∈ {+,−}. For op ∈ {×, /}, this relative error bound holds if Fsmall ≤
|a op b| (excluding division by zero).

— Rounding to nearest is monotonic: Given real numbers α, β ∈ R, α ≤ β implies
◦(α) ≤ ◦(β).

— For a, b ∈ F, if S = ◦(a+b) ∈ F, then a+b−S ∈ F. In particular the value s = a+b−S
satisfies the relationship S + s = a + b and ◦(S + s) = S. Furthermore, S and s can
be computed from a and b by a sequence of instructions involving ⊕ and 	 (see
for example [Knuth 1998] Thm B, page 236, and [Dekker 1971]). We encapsulate
these facts by the two functions TwoSum(a, b) and FastTwoSum(a, b). They deliver S
and s where S + s = a + b and ◦(S + s) = S. The former handles general a and
b and requires 6 floating-point operations; the latter requires only 3 floating-point
operations, but relies on the assumption that |a| ≥ |b|. Mapping a, b to S, s is usually
called an error-free transformation as a + b = S + s exactly. Our algorithm and its
implementation use both functions.

— Similar to error-free transformations for sum, we have error-free transformations
for product. For a, b ∈ F, if |ab| ≥ Fsmall/ε, and P = ◦(a × b) ∈ F, then a × b − P ∈ F.
In particular the value p = a × b − P satisfies the relationship P + p = a × b and
◦(P + p) = P . P and p can be computed from a and b with the IEEE754-2008 fused
multiply-add (FMA) instruction: P := a⊗b and p := ◦(a×b−P). Alternatively, one can
use a sequence of ⊕, 	 and ⊗ instructions as outlined in [Dekker 1971]. We denote
the exact product function that returns P and p by TwoProd(a, b). Our implementa-
tion uses either the FMA-based sequence or the sequence given in [Dekker 1971],
depending on whether the FMA instruction is supported on the available hardware.

3. MAIN THEOREM
The goal is to compute ‖x‖2 =

√
σ, σ =

∑n
j=1 x

2
j , faithfully. Our algorithm is built on the

core case when σ is within the “normal” range of [Fsmall, Flarge]. We first compute an ac-

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 S.Graillat et al.

curate floating-point approximation, S, to σ. The IEEE square root (correctly rounded)
◦(
√
S) is returned as the final result. This section shows that if S is accurate to within

a specific threshold, the final result is faithful: ◦(
√
S) ∈ ♦(‖x‖2) = clip(♦(‖x‖2)).

LEMMA 3.1. Let α, α′ be two real numbers in the interval [2e, 2e+1] for some integer
e. If |α′ − α| < ulp(2e)/2, then ◦(α′) ∈ ♦(α).

PROOF. Let a = ◦(α′). We first note that a and α are close to one another:

|a− α| ≤ |a− α′|+ |α′ − α|
≤ ulp(2e)/2 + |α′ − α|, because a = ◦(α′)
< ulp(2e)/2 + ulp(2e)/2, by assumption,

|a− α| < ulp(2e). (1)

To prove a ∈ ♦(α), we analyze all of the three possibilities of a = α, a < α and a > α.
The case of a = α is trivial because a ∈ F] and therefore a ∈ {a} = ♦(a) = ♦(α).

Consider the case of a < α. This means that a < 2e+1. Hence a ∈ [2e, 2e+1) if e ≥ emin,
and a ∈ [0, 2emin) if e < emin. Regardless, the next floating-point number in F] that is
bigger than a is a+ ulp(2e). We have

min{y ∈ F]|y > a} = a+ ulp(2e)

> a+ |a− α|, by (1)
= a+ (α− a), because a < α

= α.

Therefore, while a < α, the next floating-point number above a is strictly bigger than
α. In other words, a = max{y ∈ F]|y ≤ α}. This says that a ∈ ♦(α) by definition.

Consider now the final case: a > α. Since a > 2e, we either have a ∈ (2e, 2e+1] if e ≥ emin,
or a ∈ (0, 2emin] if e < emin. In either case, the next number in F] that is smaller than a
is a− ulp(2e).

max{y ∈ F]|y < a} = a− ulp(2e)

< a− |a− α|, by (1)
= a− (a− α), because a > α

= α.

Therefore, while a > α, the next floating-point number below a is strictly less than α.
In other words, a = min{y ∈ F]|y ≥ α}. This says once again that a ∈ ♦(α). The proof
is now complete.

LEMMA 3.2. Let σ ∈ [Fsmall, Flarge] be a real number in the interval [2e, 2e+1). In
particular emin ≤ e ≤ emax. Let S, s ∈ F] be such that ◦(S+s) = S. If |(S+s)−σ| < σε/2,
then S ∈ [2e, 2e+1] ∩ [0, Flarge] and |s| ≤ 2eε.

PROOF. We will first establish the fact that S ∈ [2e, 2e+1]∩ [0, Flarge]. By assumption

σ(1− ε/2) < S + s < σ(1 + ε/2).

Since σ ∈ [2e, 2e+1), e ≥ emin, we have

2e − ulp(2e)/4 = 2e(1− ε/2) < S + s < 2e+1(1 + ε/2) = 2e+1 + ulp(2e+1)/4.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Efficient calculations of faithfully rounded l2-norms of n-vectors A:7

Consequently ◦(S + s) ∈ [2e, 2e+1]. Moreover, S + s < σ+ σε/2 implies also that S + s <
Flarge + ulp(2emax)/2 which leads to ◦(S + s) ≤ Flarge. But S = ◦(S + s) by assumption,
and thus we have established that S ∈ [2e, 2e+1] ∩ [0, Flarge].

Turning now to s, there are only two possibilities: S + s ∈ [2e, 2e+1] or S + s /∈ [2e, 2e+1].
If S + s ∈ [2e, 2e+1], then |s| = |◦(S + s) − (S + s)| ≤ ulp(2e)/2 = 2eε. Consider now
S + s /∈ [2e, 2e+1]. But since S = ◦(S + s) and that we have established previously that
◦(S + s) ∈ [2e, 2e+1], we are left with only two cases:

(1) S = 2e and s < 0: In this case, the inequality 2e − ulp(2e)/4 < S + s implies
s > −ulp(2e)/4 = −2eε/2. Thus |s| < 2eε/2.

(2) S = 2e+1 and s > 0: In this case, the inequality S + s < 2e+1 + ulp(2e+1)/4 implies
that s < ulp(2e+1)/4 = 2eε. Thus |s| < 2eε.

To review, |s| ≤ 2eε if S + s ∈ [2e, 2e+1] and |s| < 2eε if S + s /∈ [2e, 2e+1]. Thus |s| ≤ 2eε
always and the proof is complete.

THEOREM 3.3. Let σ ∈ [Fsmall, Flarge] be a real number and S, s ∈ F] where ◦(S+s) =

S. If |(S + s)− σ| < εσ/8, then ◦(
√
S) ∈ ♦(

√
σ).

PROOF. We establish this theorem by showing
√
σ and

√
S satisfy the conditions for

α and α′ in Lemma 3.1. The assumption |(S+ s)−σ| < εσ/8 implies S+ s > (1−ε/8)σ.
◦(S + s) = S and that S + s is obviously positive imply S ≥ (S + s)(1− ε). Thus

S > (1− ε)(1− ε/8)σ,

> (1− 3ε/2)σ, because ε ≤ 2−24
√
S > (1− 3ε/2)

√
σ, because

√
1− 3ε/2 > 1− 3ε/2,

√
S +
√
σ > 2(1− 3ε/4)

√
σ. (2)

We derive an upper bound of |
√
S −
√
σ| as follows.

|
√
S −
√
σ| =

|S − σ|√
S +
√
σ
,

<
|S − σ|

2
√
σ(1− 3ε/4)

, by (2)

<
|S − σ|

2
√
σ

(1 + ε), because (1− 3ε/4)−1 < (1 + ε)

<
εσ/8 + |s|

2
√
σ

(1 + ε), by assumption,

|
√
S −
√
σ| <

(
ε

16

√
σ +

|s|
2
√
σ

)
(1 + ε). (3)

There is a unique interval of the form [22e, 22e+2) that contains σ. If σ is in the “left”
half: σ ∈ [22e, 22e+1), then 2e ≥ emin and Lemma 3.2 shows that S ∈ [22e, 22e+1] and
|s| ≤ 22eε. If σ is in the “right” half: σ ∈ [22e+1, 22e+2), then 2e+1 ≥ emin and Lemma 3.2
shows that S ∈ [22e+1, 22e+2] and |s| ≤ 22e+1ε. Summarizing, both

√
σ and

√
S are in

[2e, 2e+1] with e ≥ emin. By virtue of Lemma 3.1, we can establish the fact that ◦(
√
S) ∈

♦(
√
σ) provided we can show |

√
S−
√
s| < ulp(2e)/2. Since e ≥ emin, ulp(2e) = 2e+1ε, this

is equivalent to establishing |
√
S −
√
σ| < (2eε). We accomplish this by using Equation

(3) and the simple case analysis tabulated below:

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 S.Graillat et al.

Case of ε
√
σ

2eε
|s|√
σ2e+1ε

√
S−
√
σ

2eε <
(

ε
√
σ

2e+4ε + |s|√
σ2e+1ε

)
(1 + ε)

σ ∈ [22e, 22e+1) <
√

2 ≤ 22eε
22e+1ε = 1

2 <
(√

2
16 + 1

2

)
(1 + ε) < 1

σ ∈ [22e+1, 22e+2) < 2 ≤ 22e+1ε
22e+1

√
2ε

= 1√
2

<
(

1
8 + 1√

2

)
(1 + ε) < 1

Clearly, |
√
S −
√
σ| < 2eε always and ◦(

√
S) ∈ ♦(

√
σ) as claimed.

4. FAITHFUL 2-NORM – CORE CASE
Let x = [x1, x2, . . . , xn]T be the vector in question. The core algorithm considers the
case of normal range in the sense that σ = xTx is safely away from overflow and that
the least significant bit of each of the x2j does not underflow. More formally, we consider
vectors x in safe range, defined as (1) σ ≤ Flarge/2, and (2) for all j, xj is either 0, or in
the range Fsmall/ε

2 ≤ x2j ≤ Flarge.

We use a data type, double-FP, consisting of two floating-point numbers. We denote
them, for example, by A = [A, a]. A is the double-FP variable, and the actual pairs of
floating-point numbers are A and a. They have the characteristics ◦(A+ a) = A, which
means that a is a “tail” part to add extra precision to A. The mathematical sum of the
two components represents a value of at least twice the precision of the underlying
floating-point number. Here is the core algorithm for computing the sum of squares∑
j x

2
j . We make the crucial distinction between an assignment operation “:=” in an

algorithm and the mathematical equality sign “=”.

function SumOfSquares(x) // Accurate accumulation
S := [0, 0]
for j = 1, 2, . . . , n do:

P := TwoProd(xj , xj)

// P = [P, p], P + p = x2j exactly
S := SumNonNeg(S,P)

return S
end SumOfSquares

function SumNonNeg(A,B) // [A, a]+ [B, b]
// error bound of this operation 3ε2 (Theorem 4.1)
// A = [A, a],B = [B, b] nonnegative: A+ a,B + b ≥ 0

H := TwoSum(A,B)
// H = [H,h], H + h = A+B exactly
c := a⊕ b // c = a+ b+ δc
d := h⊕ c // d = h+ c+ δd.
S := FastTwoSum(H, d)
// S = [S, s], S + s = H + d exactly
//see Section 2 for TwoSum and FastTwoSum.
return S

end SumNonNeg

Theorem 3.3 guarantees that if [S, s] returned by SumOfSquares satisfies |(S+ s)−σ| <
εσ/8, then ◦(

√
S) is a faithful rounding of

√
σ = ‖x‖2. Since SumOfSquares is summing n

double-FP type, standard error analysis (see for example Chapter 3 of [Higham 2002])
shows that the relative error is bounded by ∆n−1(δ) where ∆`(δ) = `δ/(1− `δ) and δ is
the relative error bound on the underlying addition operation, which is the SumNonNeg
function. Theorem 4.1 shows that this δ is 3ε2. From that we can deduce the length
limit of x within which |(S + s)− σ| < εσ/8.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Efficient calculations of faithfully rounded l2-norms of n-vectors A:9

THEOREM 4.1. Let S = [S, s] be the result from applying SumNonNeg on nonnegatives
A = [A, a] and B = [B, b]. Let α = A+a ≥ 0, β = B+b ≥ 0 denote the exact input values,
and σ = α+β denote the exact sum. If Fsmall/ε

2 ≤ σ ≤ Flarge/2, then |(S+s)−σ| ≤ 3ε2σ.

PROOF. The theorem clearly holds if one of α or β is zero. Moreover, it is clear that
SumNonNeg is insensitive to the order of its two input arguments. It suffices therefore
to consider α ≥ β > 0. There are only two rounding errors in the entire function:
δc = c− (a+b) = ◦(a+b)− (a+b) and δd = d− (h+c) = ◦(h+c)− (h+c). More precisely,
S + s = H + d and

H + d = H + h+ a+ b+ δc + δd = σ + δc + δd.

Thus |(S+s)−σ| ≤ |δc|+ |δd|. The rest of the proof establishes the fact |δc|+ |δd| ≤ 3ε2σ.

We use this fact heavily: For any real number γ ∈ R, |◦(γ)− γ| ≤ ulp(γ)/2. Let

α = 2eα(1 + fα), β = 2eβ (1 + fβ), and σ = 2eσ (1 + fσ)

where 0 ≤ fα, fβ , fσ < 1.

σ ≥ α ≥ β =⇒ ulp(σ) ≥ ulp(α) ≥ ulp(β).

Because |a| ≤ ulp(α)/2, |a| ≤ ulp(σ)/2. Similarly, |b| ≤ ulp(σ)/2. Therefore, A + B =
σ − (a+ b) ≤ σ + ulp(σ), which implies ulp(A+B) ≤ 2ulp(σ).

We note that |δc| = |◦(a+b)−(a+b)| ≤ ulp(a+b)/2 and |a+b| ≤ ulp(σ). But |a+b| = ulp(σ)
only when |a| = |b| = ulp(σ)/2, which implies a + b is representable exactly in F and
δc = 0. When |a + b| < ulp(σ), we have ulp(a + b) ≤ ulp(ulp(σ/2)). Hence using basic
properties of the ulp function stated in Section 2,

|δc| ≤
1

2
ulp(ulp(σ/2)).

Because σ ≥ Fsmall/ε
2, ulp(ulp(σ/2)) = ulp(σ)ε ≤ 2σε2. Hence

|δc| ≤ σε2. (4)

We now show that |δd| ≤ 2σε2.

|δd| = | ◦ (h+ c)− (h+ c)|

≤ 1

2
ulp(h+ c)

≤ 1

2
ulp(ulp(A+B)/2 + |c|),

|δd| ≤
1

2
ulp(ulp(σ) + |c|). (5)

To complete the estimate on |δd|, we analyze |c|. There are only two possibilities: either
eα ≥ eβ + 1 or eα = eβ . We show that each situation leads to |δd| ≤ 2σε2.

Consider the case of eα ≥ eβ + 1. We have |a| ≤ ulp(σ)/2 and |b| ≤ ulp(σ)/4. Therefore,

|c| = | ◦ (a+ b)| ≤ |a+ b|(1 + ε) ≤ 3

4
(1 + ε)ulp(σ).

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 S.Graillat et al.

Equation 5 implies

|δd| ≤
1

2
ulp(ulp(σ) +

3

4
(1 + ε)ulp(σ))

=
1

2
ulp(ulp(σ)),

|δd| ≤ 2σε2. (6)

Consider the case of eα = eβ . In this situation, we must have eσ = eα + 1 and ulp(α) =
ulp(β) = ulp(σ)/2. As a result, |a|+ |b| ≤ ulp(σ)/2 and |c| ≤ (1 + ε)ulp(σ)/2, so

|δd| ≤
1

2
ulp(ulp(σ) +

1

2
(1 + ε)ulp(σ))

=
1

2
ulp(ulp(σ)),

|δd| ≤ 2σε2. (7)

Equations 4, 6 and 7 together show that |δc|+|δd| ≤ 3σε2, and the theorem is proved.

THEOREM 4.2. Let n be the length of a vector x in safe range and σ denote
∑
j x

2
j .

Let SumOfSquares(x) return the result [S, s]. Then

|(S + s)− σ| ≤ ∆n−1(3ε2)σ

where ∆`(δ) = `δ/(1− `δ). In particular, if the length n satisfies n < ((24 + ε)ε)−1, then

|(S + s)− σ| < εσ/8.

PROOF. From Theorem 4.1 and standard error bound on adding n nonnegative
floating-point types [Higham 2002] with an addition operation of relative error
bounded by 3ε2,

|(S + s)− σ| ≤ ∆n−1(3ε2)σ.

Because ∆`(δ) is an increasing function in ` in the range 0 ≤ ` < 1/δ, for n < ((24 +
3ε)ε)−1,

∆n−1(3ε2) < ∆n(3ε2) < ∆L(3ε2) =
ε

8
,

where L = ((24 + 3ε)ε)−1.

That maximum vector length bound L = ((24 + 3ε)ε)−1 corresponds to L = 699050 for
IEEE754 binary32 and L ≤ 3.76 · 1014 for IEEE754 binary64.

We parallelize SumOfSquares in an obvious manner: partition the input vector x to τ
subvectors of roughly equal length. Perform the sum of squares on each subvector in
parallel. This parallelism can be realized either at the thread level or data level, the
latter using SIMD vector instructions such as SSE or AVX. The partial sums of squares
are then accumulated in a serial manner.

function SumOfSquaresP(x) // Parallel SumOfSquares
Partition x into τ portions, x(t), t = 1, 2, . . . , τ
// length of each x(t) is no more than m = dn/τe.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Efficient calculations of faithfully rounded l2-norms of n-vectors A:11

S(t) := SumOfSquares(x(t)), t = 1, 2, . . . , τ .
// In parallel, each S(t) = [S(t), s(t)] is a double-FP.
S := [0, 0]; S := SumNonNeg(S,S(t)), t = 1, 2, . . . , τ .
// In serial, summing the τ partial sums of squares
// S = [S, s] at this point; S + s ≈

∑n
j x

2
j .

return S
end SumOfSquaresP

THEOREM 4.3. Let n be the length of x and S = [S, s] be the result of
SumOfSquaresP(x) with τ portions and m = dn/τe. Then

|(S + s)− σ| ≤ ∆m+τ (3ε2)σ.

In particular,

|(S + s)− σ| ≤ ∆n−1(3ε2)σ

whenever m+ τ ≤ n− 1.

PROOF. We document the two stages of errors with the following notations. Let
σ(t) = (x(t))Tx(t), t = 1, 2, . . . , τ , and σ =

∑τ
t=1 σ

(t) denote the exact partial and exact
complete inner products, respectively. Let

σ̃(t) = S(t) + s(t), approximate partials 1 ≤ t ≤ τ ,
σ̃ =

∑τ
t=1 σ̃

(t), exact sum of approximate partials,˜̃σ = S + s, approximate sum of approximate partials.

For the computed partials, where we are summing no more than m = dn/τe double-FP
types, we have

|σ̃(t) − σ(t)| ≤ ∆m−1(3ε2)σ(t), t = 1, 2, . . . , τ,

and ∣∣∣∣∣
τ∑
t=1

(σ̃(t) − σ(t))

∣∣∣∣∣ ≤ ∆m−1(3ε2)

τ∑
j=1

σ(t).

This implies

|σ̃ − σ| ≤ ∆m−1(3ε2)σ, (8)
σ̃ ≤ (1 + ∆m−1(3ε2))σ. (9)

Similarly,

|˜̃σ − σ̃| ≤ ∆τ−1(3ε2) σ̃. (10)

Combining Equations 8 through 10,

|˜̃σ − σ|
σ

≤ ∆τ−1(3ε2) (σ̃/σ) + ∆m(3ε2)

≤ ∆τ−1(3ε2) (1 + ∆m−1(3ε2)) + ∆m(3ε2)

≤ ∆τ (3ε2) + ∆m(3ε2) (11)
≤ ∆m+τ (3ε2). (12)

Equation 11 follows from its preceding line as long as 3ε2 ≤ (n+m+ 2)−1, and Equa-
tion 12 follows from Equation 11 because ∆`(3ε

2) + ∆`′(3ε
2) ≤ ∆`+`′(3ε

2). Finally,
whenever m+ τ ≤ n− 1, ∆m+τ (3ε2) ≤ ∆n−1(3ε2). The proof is now complete.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 S.Graillat et al.

We remark that the number of threads τ is typically much smaller than the vector
length n. In a common scenario, τ equals the number of cores which is in the order of
10 or so. Moreover, threading is beneficial only when there is enough work per thread,
implying m = n/τ is in the order of 100 or more. Thus, m + τ ≈ n/τ , implying m +
τ ≤ n − 1. This says that a parallel sum of squares is in general more accurate then
the serial version. In particular, as long as n < ((24 + ε)ε)−1 and [S, s] is obtained
from with SumOfSquares or SumOfSquaresP, an IEEE conforming square root evaluation
sqrt(S) produces a faithfully rounded ‖x‖2 for x whose elements fall in the core range
discussed here.

5. FAITHFUL 2-NORM – GENERAL CASE
That the simple accumulation of σ =

∑n
j=1 x

2
j is susceptible to spurious exceptions

can be illustrated by the simple example of n = 8, xj = ◦(2
√
Flarge) for j ≤ 4 and

xj = ◦(
√
Fsmall/2), j > 4. While ‖x‖2 is approximately 4

√
Flarge, overflows in computing

x2j for j ≤ 4 leads to a computed σ of +∞, rendering the final computed l2-norm com-
pletely wrong. This is why general-purpose software such as LAPACK’s public release
essentially computes x̂

√∑
j(xj/x̂)2 where x̂ = maxj |xj |. While this strategy resolves

the spurious overflow problem satisfactorily, spurious underflows can still be triggered.
If underflow is masked, spurious underflow is harmless to the final numerical results.
Nevertheless, these spurious underflows may significantly degrade performance on
computing platforms that handle underflow via a trapping mechanism.

We present here an algorithm that returns a value in clip(♦(‖x‖2)) and reports over-
flows and underflows faithfully as defined in Section 2. Let σ =

∑
j x

2
j denote the sum

of squares. Our algorithm first computes Z, a faithful rounding of a scaled l2-norm
‖x̂‖2 = γ−m/2‖x‖2, that is Z ∈ ♦(‖x̂‖2). The factor γ−m/2 is chosen so that γm is an even
power of 2, γ−m/2 ∈ F, and ‖x̂‖2 ∈ [Fsmall, Flarge]. We shall describe a way to choose γ and
to compute m below. The final result is returned, naturally, as γm/2 ⊗ Z. Theorem 5.1
establishes rigorously that not only does the numerical value γm/2⊗Z ∈ clip(♦(‖x‖2)),
but the multiplication also reports overflow and underflow faithfully. The remaining of
this section then focuses on the computation of Z ∈ ♦(‖x̂‖2).

THEOREM 5.1. Let ζ ∈ [Fsmall, Flarge]∪{0} be a real number and Z be a floating-point
number where Z ∈ ♦(ζ). Let t be an integer where 2t ∈ F. Then the IEEE multiplication
2t⊗Z satisfies 2t⊗Z ∈ clip(♦(2tζ)) and 2t⊗Z reports overflow and underflow faithfully
as an implementation of 2tζ.

PROOF. 2t ⊗Z ∈ clip(♦(2tζ)) follows easily if ◦(2tZ) ∈ ♦(2tζ), which is what we will
prove. The case of ζ = 0 is trivial as ♦(ζ) = {0}, implying Z = 0 as well. Obviously
◦(2tZ) ∈ ♦(2tζ).

It therefore suffices to consider ζ ∈ [Fsmall, Flarge]. There is a unique integer e, e ≥ emin,
such that ζ ∈ [2e, 2e+1). Z ∈ ♦(ζ) implies that Z ∈ [2e, 2e+1] and |ζ−Z| < ulp(2e). There
are only two possibilities: t+ e ≥ emin and t+ e < emin. If t+ e ≥ emin, we have

◦(2tZ) = 2tZ ∈ {2tα | α ∈ ♦(ζ)} = ♦(2tζ).

If t+ e < emin, both 2tζ and 2tZ lie inside [2t+e, 2t+e+1] and

|2tζ − 2tZ| < 2tulp(2e) ≤ ulp(2t+e)/2.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Efficient calculations of faithfully rounded l2-norms of n-vectors A:13

By virtue of Lemma 3.1, ◦(2tZ) ∈ ♦(2tζ).

Now that W = ◦(2tZ) ∈ ♦(2tζ), it is clear that given any Y ∈ F], 2tζ ≤ Y implies W ≤
Y , and 2tζ ≥ Y implies W ≥ Y . Therefore, if 2tζ ∈ [Fsmall, Flarge], 2t ⊗ Z will not report
overflow or underflow. If 2tζ ≥ 2emax+1, 2t⊗Z will definitely report an overflow. Finally,
observe that if 2tζ ∈ F for some t < 0, then ζ ∈ F] and thus Z ∈ ♦(ζ) = {ζ}, implying
that Z = ζ and 2tZ = 2tζ. Consequently, whenever 2tζ ≤ Fsmall − 2emin+1ε, 2t ⊗ Z will
report underflow faithfully as defined in Section 2. This completes the proof.

We turn now to the computation of a scaled l2-norm. A known strategy [Blue 1978]
partitions the input data into three bins: one for small inputs, one for large and one for
“medium” inputs. The data in each bin are scaled by a common, statically chosen scale
factor so that sums of squares of elements in each bin incur no spurious underflow
or overflow exceptions. The final result is constructed by appropriate combination of
the partial sums-of-squares from the bins. We follow the same approach but with two
enhancements. First, while we will explain our approach using three bins, we will
point out later that our implementation keeps only two bins of data at any given time.
This is important as the bins are in practice kept in the scarce SIMD vector registers3.
Second, our combination of the binned partial sums of squares are done in a way that
guarantees a faithfully rounded scaled l2-norm.

The basic idea is to divide the entire input range of |xj | into three “equal” subranges,
where sums of squares of data in the middle (interior) subrange does not generate
exceptions. Data in the two exterior ranges are scaled into the interior subrange. Now
the specifics. Define the even integer E by

E = min{e | 3e ≥ emax − emin − log2(ε), e is even }.
From E, we define a scale factor γ = 2−E and use the following notations.

Ehi = emax + 1− E, βhi = 2Ehi ,
Elo = emax + 1− 2E, βlo = 2Elo .

In particular, γβhi = βlo. We tabulate the specific values for binary32 and binary64
here.

E Ehi Elo βhiβlo
binary32 94 34 −60 2−26 = ε/4
binary64 700 324 −376 2−52 = 2ε

Given the input vector x = [x1, x2, . . . , xn]T , the three bins are

A = { γxj | |xj | ≥ βhi },
B = { xj | βlo ≤ |xj | < βhi },
C = { xj/γ | |xj | < βlo }.

By design βlo ≤ |x̂j | < βhi for x̂j ∈ A∪B∪C. Denote the partial, scaled, sums-of-squares
as

σ̂A=
∑
x̂j∈A

x̂2j , σ̂B=
∑
x̂j∈B

x̂2j , and σ̂C=
∑
x̂j∈C

x̂2j .

3It is not possible to go down to one bin only as long as the bin boundaries and scaling factors are chosen
statically to avoid division operations.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 S.Graillat et al.

Clearly, the “bin-sums” are in the range

σ̂A, σ̂B, σ̂C ∈ {0} ∪ [β2
lo, nβ

2
hi) ⊆ {0} ∪ [β2

lo, β
2
hi/ε), (13)

by assuming n ≤ 1/ε. Furthermore,

σ =
∑
j

x2j = γ−2 σ̂A + σ̂B + γ2 σ̂C . (14)

A straightforward implementation can collect all three bins, and invoke the
SumOfSquares function (or the parallel version) on each of the bins, followed by some
appropriate combination method to arrive at the final result. Our implementation in
fact only keeps and processes two bins. The observation is that A and C are never
needed simultaneously. If A is nonempty, then Equation 13 and the fact that γβhi = βlo
show that γ2σ̂C/(γ−2σ̂A) ≤ γ2/ε � ε2. Neglecting γ2σ̂C altogether incurs a relative
error (much) less than ε2. A similar estimate shows that keeping σ̂B is nevertheless
necessary in order not to loose too much accuracy.

Briefly speaking, our implementation starts the binning process by keeping the inte-
rior (middle) bin and one exterior bin. When the first element belonging to A appears,
the existing exterior bin is replaced with that element, and elements from C is never
collected from that point onwards. Let us mention that the logic required to decide
whether the first element belonging to A has already appeared or not can be imple-
mented using nothing but masks, not requiring branches. Denote the two actually
maintained bins by U and V, then

σ2 = γk (σ̂U + γ2σ̂V),

where k = −2 if U corresponds to A, and k = 0 if U corresponds to B. In either case, the
“two-bin” sum of squares σ2 satisfies

|σ2 − σ| ≤ ε2σ, and σ2 ≤ (1 + ε2)σ. (15)

To compute σ2, the SumOfSquares function is applied to each of the two resulting bins,
yielding two double-FP variables U = [U, u] and V = [V, v]. Both U + u and V + v
approximate their targets with high relative accuracies:

|(U + u)− σ̂U |
σ̂U

,
|(V + v)− σ̂V |

σ̂V
≤ ∆n−1(3ε2),

where ∆`(δ) = `δ/(1− `δ). Using n instead of n− 1 for simplicity, we have∣∣γk[(U + u) + γ2(V + v)]− σ2
∣∣ ≤ ∆n(3ε2)σ2, (16)

and

γk[(U + u) + γ2(V + v)] ≤ (1 + ∆n(3ε2))σ2. (17)

We handle γk[(U +u) + γ2(V + v)] as follows. For nonzero U and V , β2
lo ≤ U +u, V + v <

β2
hi/ε (as we assume n ≤ 1/ε). If U ≥ β2

lo/ε
3,

γ2(V + v) < γ2β2
hi/ε = β2

lo/ε ≤ ε2U ≤ ε2(1 + ε)(U + u).

Similarly, if V ≤ β2
loε

2/γ2 = β2
hiε

2,

γ2(V + v) ≤ γ2(1 + ε)V < β2
loε

2(1 + ε) ≤ ε2(1 + ε)(U + u).

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Efficient calculations of faithfully rounded l2-norms of n-vectors A:15

Thus if U ≥ β2
lo/ε

3 or V ≤ β2
hiε

2, the error by dropping the V term is in the order of ε2:

γ2(V + v)

(U + u) + γ2(V + v)
≤ ε2(1 + ε). (18)

If U < β2
lo/ε

3 and V > β2
hiε

2, then neither (U +u)/γ nor γ(V +v) raises exceptions. This
is because U < β2

lo/ε
3 =⇒ U/γ < βhiβlo/ε

2 ≈ 1/ε. Similarly, V > β2
hiε

2 =⇒ γV >
βhiβloε

2 ≈ ε3. These discussions are expressed in the function SumOfSquaresBins.

function SumOfSquaresBins(x) // general inputs
Obtain bins U , V, and integer k as discussed
// γk(σ̂U + γ2σ̂V) approximates

∑
j x

2
j accurately

// k = −2 if U is A, k = 0 if U is B
// Note that k = −2 if and only if bin A is nonempty
[U, u] := SumOfSquaresP(x(U));
[V, v] := SumOfSquaresP(x(V));
if U = 0 // A and B are both empty

m := 2, [S, s] := [V, v],
return m and S = [S, s].

if U ≥ β2
lo/ε

3 or V ≤ β2
hiε

2

m := k, [S, s] := [U, u]
return m and S = [S, s]

if |v| ≤ β2
hiε

2, v := 0.
[U, u] := [γ−1U, γ−1u]; [V, v] := [γV , γv]; m := k + 1;
[S, s] := SumNonNeg([U, u], [V, v])
return m and S = [S, s]

end SumOfSquaresBins

THEOREM 5.2. Let SumOfSquaresBins(x) return m and S = [S, s]. Denote by σ̂ the
scaled sums of squares σ̂ = γ−mσ = γ−m

∑
j x

2
j . If the length n of x satisfies n + 3 <

((24 + ε)ε)−1, then ◦(
√
S) ∈ ♦(

√
σ̂).

PROOF. We group the total errors incurred in computing σ as γmσ̂ into three stages.
In Stage 1, the value σ, which is exactly represented in terms of γ and the three bin-
sums (Equation 14), is approximated by σ2 = γk(σ̂U + γ2σ̂V). In Stage 2, the two bin-
sums σ̂U and σ̂V are approximated by the double-FP [U, u] and [V, v]. Finally, in Stage
3, γk((U + u) + γ2(V + v)) is approximated as γm(S + s) by possibly dropping v or both
V and v and the use of SumNonNeg.

Consider the Stage-3 error. There are three possible points of exit in the procedure
SumOfSquaresBins. The first point of exit corresponds to a zero Stage-3 error as there
is actually only at one nonempty bin. The second point of exit corresponds to Stage-3
error bounded by ε2(1 + ε) as given by Equation 18. If the last point of exit is taken,
Stage-3 error consists of one part that is due to a single application of SumNonNeg, which
is bounded by 3ε2 (Theorem 4.1), and one due to possibly dropping the v term, which is
bounded by ε2(1 +ε) (Equation 18). Thus we bound the error in Stage 3 conservatively
by 5ε2: ∣∣γm(S + s)− γk[(U + u) + γ2(V + v)]

∣∣
γk[(U + u) + γ2(V + v)]

≤ 5ε2, (19)

and

γm(S + s) ≤ (1 + 5ε2) γk[(U + u) + γ2(V + v)]. (20)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 S.Graillat et al.

Stage 1 and Stage 2 errors have already been discussed in Equations 15 through 17.
Putting these together,

|γm(S + s)− σ|/σ
≤
∣∣ γm(S + s)− γk[(U + u) + γ2(V + v)]

∣∣ /σ +∣∣ γk[(U + u) + γ2(V + v)]− σ2
∣∣ /σ + |σ2 − σ|/σ,

≤ 5ε2(1 + ∆n(3ε2))(1 + ε2) + ∆n(3ε2)(1 + ε2) + ε2,

≤ ∆n(3ε2) + 7ε2.

Consequently,

|(S + s)− σ̂| ≤ (∆n(3ε2) + 7ε2) σ̂,

≤ (∆n(3ε2) + 9ε2) σ̂,

≤ ∆n+3(3ε2)σ̂. (21)

From Theorems 4.2 and 4.3, n+ 3 < ((24 + 3ε)ε)−1 implies

|(S + s)− σ̂| < εσ̂/8,

a condition that guarantees, by Theorem 3.3, that ◦(
√
S) ∈ ♦(

√
σ̂).

AccuNrm2 below is the straightforward synthesis of the previous discussions. Theo-
rem 5.3 that follows is a formal statement that summarizes the technical results of
this paper.

function AccuNrm2(x) // general faithful l2-norm
(m,S) := SumOfSquaresBins(x)
// m is an integer in the range [−2, 2] and γm(S + s) ≈

∑
j x

2
j

// By design, γm is an even power of 2.
Z := sqrt(S)

return γm/2 ⊗ Z
// Value in clip(♦(‖x‖2)) and reports overflow/underflow faithfully (Theorem 5.3)

end AccuNrm2

THEOREM 5.3. Let x be a vector of length n. If n < L′ with L′ = ((24 + 3ε)ε)−1 − 3,
then AccuNrm2(x) ∈ clip(♦(‖x‖2)) and reports overflow and underflow faithfully.

PROOF. This is a direct consequence of Theorems 5.1 and 5.2.

The bound L′ on the vector length n induced by 5.3 translates as follows for IEEE754
binary32 and binary64:

Vector length bound n < L′

binary32 L′ = 699047
binary64 L′ = 3.75299968947538 · 1014

6. IMPLEMENTATION AND TESTING
The complete set of codes, together with testing and performance measurement auxil-
iary sources, is available at

http://www.christoph-lauter.org/faithfulnorm.tgz

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Efficient calculations of faithfully rounded l2-norms of n-vectors A:17

under an open source license.

We implemented and tested our faithfully rounded, division-free l2-norm with faithful
reporting of underflow and overflow. The implementation referred as FaithfulNorm
closely follows the algorithmic description given in the previous sections.

We used IEEE 754 binary64 as working-precision and we restricted ourselves to a
SIMD environment, targeting in particular Intel SSE/AVX units, with or without sup-
port for the IEEE754 fused-multiply-and-add (FMA) instruction. Recent versions of
SSE and all versions of AVX support IEEE 754 binary64 precision. The rationale for
the choice of a SIMD environment is twofold: to use an environment most similar to
the existing codes we compare our algorithm to, and to maximize our performance in
a typical processor without the use of threads.

To achieve high performance on modern pipelined floating-point units, it is important
to avoid branching (when possible) as well as avoid the use of expensive operations
such as floating-point division. By design, our l2-norm algorithm is division free. We
are also able to make our inner loop branching free based on three observations. First,
the SSE/AVX units offer comparison instructions that return their results as masks of
all-ones or all-zeros. Second, logical bit-and a floating-point variable with all-ones leave
the variable unchanged while bit-and with all-zeros turn it into a floating-point value
of zero. As a matter of course, multiplying floating-point zeros and accumulating them
is innocuous. Third, discarding the C bin when the first A is found and maintaining in
these registers the U bin from that point onward (cf. Section 5) just means maintaining
a binary flag, which can also be implemented as a bit-mask.

We shall repeat that our implementation has no memory overhead nor memory access
overhead: each input vector element xj is read only once and the intermediate values
(accumulators etc.) are kept in registers.

We compared the implementation of our faithfully rounded l2-norm with implementa-
tions for other approaches with respect to both accuracy and performance. To do so,
we implemented a naı̈ve l2-norm, called NaiveNorm, that plainly uses working preci-
sion for squaring the xi and accumulating these squares, without any underflow and
overflow avoidance. We further implemented the algorithm found in netlib [Anderson
et al. 1999]; we call this implementation NetlibNorm. Finally, we implemented another
faithfully rounded l2-norm using the arbitrary precision library MPFR [MPFR]. This
implementation is simply based on an exact accumulation of the squares x2i in an
accumulator that provides enough precision: using an MPFR variable with precision
p = 2 (emax − emin − log2 ε) + dlog2 ne is just enough. We refer to it as MPFRNorm.

We performed testing on a 4-core Intel Core i7 at 2.67 GHz with 4Gb of RAM and on
a 8-core Intel Xeon E3-1275 v3 at 3.50 GHz with 32Gb of RAM. All implementations
were written in C –using builtins for access to SIMD instructions– and compiled us-
ing gcc version 4.8 and options -std=c99 -O3 -march=native. Timings are given cycles
per vector element, obtained using the Read-Time-Step-Counter instruction with seri-
alization, subtracting off the measured overhead for a call to an empty function and
dividing by the number of elements.

We used pseudo-random floating-point input vectors in our tests. These pseudo-
random values were constructed as follows: we separately generated a uniformly dis-
tributed exponent value in range and a uniformly distributed significand for that cho-
sen exponent value. We then constructed a floating-point value out of this exponent
and significand value. When generating values for a subdomain [a; b] ⊆ F, we per-

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 S.Graillat et al.

formed that random-generation process for an exponent range completely covering the
possible exponents of floating-point values in [a; b], discarding all generated floating-
point values that were outside of [a; b].

Table I. Maximum error in ulps observed for various domains and vector lengths n, plain SSE implementation

vectors with vectors for which vectors with vectors with chosen
normal results results underflow entries around 1.0 “half-ulp” entries

n = 103 n = 107 n = 103 n = 107 n = 103 n = 107 n = 103 n = 107

NaiveNorm ∞ ∞ 8.84 · 1012 5.46 · 1010 7.73 861 250 2.50 · 106
NetlibNorm 2.01 524 0.496 0.698 7.58 609 250 2.50 · 106
MPFRNorm 0.494 0.481 0.490 0.498 0.468 0.497 0.0749 0.484

FaithfulNorm 0.620 0.628 0.497 0.499 0.605 0.701 0.0749 0.484

We did accuracy testing with test vectors of various lengths n and input types. The
testing results are resumed in Table I.

First, we considered input vectors chosen such that the final l2-norm result is a nor-
mal floating-point number. Second, we tested the algorithms on input vectors for which
the final result gradually underflows. Third, we performed testing on vectors with in-
puts around 1.0, i.e. where underflow or overflow avoidance is not necessary. Finally,
we constructed input vectors with x1 = 1 and subsequent xjs are chosen to be much
smaller than 1 but with the contrived property that ◦(1 + x2j) produces a positive ab-
solute error very close to the “half-ulp” bound of ε. This test case is admittedly artifi-
cial, but nonetheless demonstrates a near worse-case error scenario for NaiveNorm and
NetlibNorm.

Testing shows that both the NaiveNorm and NetlibNorm implementations fail to provide
faithfully rounded results. It demonstrates also that both our FaithfulNorm as well as
the MPFRNorm algorithm do yield faithfully rounded results.

In cases when the final l2-norm does not overflow, our algorithm FaithfulNorm returns
a result with an error well below 1ulp. As expected, the maximum error does not vary
with vector length, whereas it does for the netlib l2-norm.

Accuracy testing also shows that with random inputs, netlib l2-norm can result in
hundreds of ulps of error when the vectors lengths n get to be ten million or more. In
deliberately constructed inputs, errors as large as about 0.25nulp can be observed.

Turning now to performance testing, Tables II, III, IV and V summarize our observa-
tions. We used vectors of floating-point numbers in various domains of interest. We
tested for vectors for which the final l2-norm results gradually underflow, overflow or
stay in the range of normal floating-point numbers. Measurements were done for vary-
ing vector lengths. Starting with some minimal vector length (a couple of dozen ele-

Table II. Computation time in cycles per vector element, plain SSE version on Intel Core i7

vectors with vectors for vectors with vectors for vectors
normal which results entries around which results provoking spuri-
results underflow 1.0 overflow ous underflow

in NetlibNorm
NaiveNorm 47 137 3.48 46.8 128
NetlibNorm 156 472 19.1 156 274
MPFRNorm 1080 2670 818 1090 1660

FaithfulNorm 34.2 289 25.3 34.2 62.2

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Efficient calculations of faithfully rounded l2-norms of n-vectors A:19

Table III. Computation time in cycles per vector element, plain SSE version on Intel Xeon E3-1275

vectors with vectors for vectors with vectors for vectors
normal which results entries around which results provoking spuri-
results underflow 1.0 overflow ous underflow

in NetlibNorm
NaiveNorm 4.95 4.75 4.72 4.70 4.52
NetlibNorm 21.9 158 12.8 21.1 21.8
MPFRNorm 810 1160 536 803 717

FaithfulNorm 21.5 87.3 21.8 21.7 20.3

Table IV. Computation time in cycles per vector element, AVX version w/o FMA on Intel Xeon E3-1275

vectors with vectors for vectors with vectors for vectors
normal which results entries around which results provoking spuri-
results underflow 1.0 overflow ous underflow

in NetlibNorm
NaiveNorm 4.85 4.61 4.68 4.86 4.52
NetlibNorm 21.1 157 13.3 21.6 21.8
MPFRNorm 795 1250 552 765 720

FaithfulNorm 12 50.7 12.5 12.6 14.8

Table V. Computation time in cycles per vector element, AVX version using FMA on Intel Xeon E3-1275

vectors with vectors for vectors with vectors for vectors
normal which results entries around which results provoking spuri-
results underflow 1.0 overflow ous underflow

in NetlibNorm
NaiveNorm 4.52 4.52 4.52 4.52 4.52
NetlibNorm 20.5 151 12.6 20.5 22
MPFRNorm 722 1110 481 723 770

FaithfulNorm 6.94 42.3 6.94 6.94 10.4

ments), vector length had no influence on computation time per element; we therefore
report only the numbers obtained for vectors of length 106.

These performance results speak in favor of our FaithfulNorm implementation. For
cases when the final result is a normal floating-point number, our implementation is
up to 3 times faster than the netlib implementation. As already explained, this is due
to several factors: avoidance of spurious underflow, no use of expensive divisions and
an algorithm that is branch-free in the inner loop. In particular the relative cost of the
divisions and branches in the netlib implementation can be seen in the performance
data: on Intel Core i7, which does not yet implement the recent AVX extensions, our
algorithm is up to 4.5 times faster than netlib whereas on Intel Xeon E3-1275, the
same SSE codes run equally fast. However, on Intel Xeon E3-1275, AVX and FMA
are available, allowing our l2-norm to be up to 3 times faster than netlib. It also
worth mentioning that spurious underflow in netlib hurts netlib performance on
some processors –such as the Intel Core i7– but does not on others, such as the Intel
Xeon E3-1285.

We shall however mention that our algorithm does have lower performance than the
netlib in two cases. First, for inputs when the vector length is (very) short – typically
less than a dozen elements. In this case our algorithm has a much higher static over-
head due to the elaborate computations needed in the reduction of the bins and square
root. In future work we shall address this problem with a call-out to a specialized l2-
norm for very small vectors. Second, the netlib norm can be faster on some processors
that have a faster floating-point division instruction (with respect to multiplication)
and that do not suffer a performance impact due to branching nor on subnormal han-
dling. This effect can already be measured on recent Intel Xeons. But we point out

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 S.Graillat et al.

that these processors come equipped with the FMA instructions which FaithfulNorm
can exploit. Table V shows FaithfulNorm regains the speed advantage when it uses the
FMA instructions on these processors appropriately.

7. CONCLUSIONS
In this paper, we presented an efficient algorithm to compute the faithful rounding
of the l2-norm of a floating-point vector. While our algorithm is very accurate, it is
also faster than previous algorithms like the one of netlib that gives no information
about the accuracy of the result. Moreover, our algorithm avoids spurious overflow and
underflow. It is also suitable for parallel implementations. We have hitherto focused
our implementation on vector-parallelism using SIMD instructions. Implementation
and testing of our algorithm in a threaded environment as well as formulating the
algorithm in terms of auto-vectorizable, auto-parallelizable code is left to future work.

Disclaimers
Software and workloads used in performance tests may have been optimized for performance
only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are mea-
sured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other infor-
mation and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. Configurations:
Refer to table 1. For more information go to http://www.intel.com/performance

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,
SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the avail-
ability, functionality, or effectiveness of any optimization on microprocessors not manufactured
by Intel. Microprocessor-dependent optimizations in this product are intended for use with In-
tel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved
for Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice. Notice revision
#20110804

REFERENCES
E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra, J. Du Croz, S. Hammarling,

A. Greenbaum, A. McKenney, and D. Sorensen. 1999. LAPACK Users’ guide (third ed.). Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA.

J. L. Blue. 1978. A portable Fortran program to find the Euclidean norm of a vector. ACM Trans. Math.
Software 4, 1 (1978), 15–23.

T. J. Dekker. 1971. A floating-point technique for extending the available precision. Numer. Math. 18 (1971),
224–242.

Nicholas J. Higham. 2002. Accuracy and stability of numerical algorithms (second ed.). Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA. xxx+680 pages.

Donald E. Knuth. 1998. The Art of Computer Programming, Volume 2, Seminumerical Algorithms (third
ed.). Addison-Wesley, Reading, MA, USA. xiii+762 pages.

X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Y. Kang, A. Kapur, M. C.
Martin, B. J. Thompson, T. Tung, and D. J. Yoo. 2002. Design, implementation and testing of extended
and mixed precision BLAS. ACM Trans. Math. Softw. 28, 2 (2002), 152–205.

MPFR. MPFR (Multiple Precision Floating-point Reliable library). Available at http://www.mpfr.org.
J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé,

and S. Torres. 2010. Handbook of Floating-point Arithmetic. Birkhäuser Boston Inc., Boston, MA.
xxiv+572 pages.

Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. 2005. Accurate Sum And Dot Product. SIAM J. Sci.
Comput. 26, 6 (2005), 1955–1988.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Efficient calculations of faithfully rounded l2-norms of n-vectors A:21

Siegfried M. Rump. 2009. Ultimately fast accurate summation. SIAM J. Sci. Comput. 31, 5 (2009), 3466–
3502.

Siegfried M. Rump, Takeshi Ogita, and Shin’ichi Oishi. 2008a. Accurate floating-point summation. I. Faith-
ful rounding. SIAM J. Sci. Comput. 31, 1 (2008), 189–224.

Siegfried M. Rump, Takeshi Ogita, and Shin’ichi Oishi. 2008b. Accurate floating-point summation. II. Sign,
K-fold faithful and rounding to nearest. SIAM J. Sci. Comput. 31, 2 (2008), 1269–1302.

Yong-Kang Zhu and Wayne B. Hayes. 2009. Correct Rounding and a Hybrid Approach to Exact Floating-
Point Summation. SIAM J. Sci. Comput. 31, 4 (2009), 2981–3001.

Yong-Kang Zhu and Wayne B. Hayes. 2010. Algorithm 908: Online Exact Summation of Floating-Point
Streams. ACM Trans. Math. Softw. 37, 3 (2010).

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

