Fourier-based numerical approximation of the Weertman equation for moving dislocations - Archive ouverte HAL Access content directly
Journal Articles International Journal for Numerical Methods in Engineering Year : 2018

Fourier-based numerical approximation of the Weertman equation for moving dislocations

Abstract

This work discusses the numerical approximation of a nonlinear reaction-advection-diffusion equation, which is a dimensionless form of the Weertman equation. This equation models steadily-moving dislocations in materials science. It reduces to the celebrated Peierls-Nabarro equation when its advection term is set to zero. The approach rests on considering a time-dependent formulation, which admits the equation under study as its long-time limit. Introducing a Preconditioned Collocation Scheme based on Fourier transforms, the iterative numerical method presented solves the time-dependent problem, delivering at convergence the desired numerical solution to the Weertman equation. Although it rests on an explicit time-evolution scheme, the method allows for large time steps, and captures the solution in a robust manner. Numerical results illustrate the efficiency of the approach for several types of nonlinearities.
Fichier principal
Vignette du fichier
JosienEtAl_arxiv.pdf (1019 Ko) Télécharger le fichier
Fig6a.eps (194.78 Ko) Télécharger le fichier
Fig6b.eps (179.91 Ko) Télécharger le fichier
Fig6c.eps (193.45 Ko) Télécharger le fichier
Fig6d.eps (177.6 Ko) Télécharger le fichier
Fig7a.eps (232.6 Ko) Télécharger le fichier
Fig7b.eps (217.56 Ko) Télécharger le fichier
Fig8a.eps (210.88 Ko) Télécharger le fichier
Fig8b.eps (195.8 Ko) Télécharger le fichier
Fig9a.eps (167.52 Ko) Télécharger le fichier
Fig9b.eps (169.85 Ko) Télécharger le fichier
fig1.eps (73.53 Ko) Télécharger le fichier
fig10.eps (284.16 Ko) Télécharger le fichier
fig11.eps (303.09 Ko) Télécharger le fichier
fig12.eps (161.55 Ko) Télécharger le fichier
fig2.eps (157.77 Ko) Télécharger le fichier
fig3.eps (619.95 Ko) Télécharger le fichier
fig4.eps (380.84 Ko) Télécharger le fichier
fig5.eps (197.96 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01510158 , version 1 (19-04-2017)

Identifiers

Cite

Marc Josien, Yves-Patrick Pellegrini, Frédéric Legoll, Claude Le Bris. Fourier-based numerical approximation of the Weertman equation for moving dislocations. International Journal for Numerical Methods in Engineering, 2018, Numerical Methods in Engineering, 113 (12), pp.1827-1850. ⟨10.1002/nme.5723⟩. ⟨hal-01510158⟩
942 View
138 Download

Altmetric

Share

Gmail Facebook X LinkedIn More