Regression modeling on stratified data with the lasso - Archive ouverte HAL
Article Dans Une Revue Biometrika Année : 2017

Regression modeling on stratified data with the lasso

Résumé

We consider the estimation of regression models on strata defined using a categorical covariate, in order to identify interactions between this categorical covariate and the other predictors. A basic approach requires the choice of a reference stratum. We show that the performance of a penalized version of this approach depends on this arbitrary choice. We propose a refined approach that bypasses this arbitrary choice, at almost no additional computational cost. Regarding model selection consistency, our proposal mimics the strategy based on an optimal and covariate-specific choice for the reference stratum. Results from an empirical study confirm that our proposal generally outperforms the basic approach in the identification and description of the interactions. An illustration on gene expression data is provided.
Fichier principal
Vignette du fichier
doc00026803.pdf (474.16 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01509933 , version 1 (11-05-2017)

Identifiants

Citer

Edouard Ollier, Vivian Viallon. Regression modeling on stratified data with the lasso. Biometrika, 2017, 1 (104), pp.83-96. ⟨10.1093/biomet/asw065⟩. ⟨hal-01509933⟩
161 Consultations
423 Téléchargements

Altmetric

Partager

More