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Abstract
We consider the estimation of regression models on strata defined using a categorical covariate, in
order to identify interactions between this categorical covariate and the other predictors. A basic
approach requires the choice of a reference stratum. We show that the performance of a penalized
version of this approach depends on this arbitrary choice. We propose a refined approach that by-
passes this arbitrary choice, at almost no additional computational cost. Regarding model selection
consistency, our proposal mimics the strategy based on an optimal and covariate-specific choice for
the reference stratum. Results from an empirical study confirm that our proposal generally outper-
forms the basic approach in the identification and description of the interactions. An illustration is
provided on gene expression data.

1. Introduction

We consider the estimation of regression models when the population under study is stratified, as is
standard in epidemiology and clinical research. For instance, when studying relapse after a primary
breast cancer, it is now common to analyze various histological subtypes at once (Voduc et al.,
2010; Rosner et al., 2013). In order to accurately estimate the risk of relapse according to cancer
subtype, risk factors that interact with cancer subtype need to be identified, and the corresponding
interactions need to be precisely described. In pharmacokinetics, it is often of interest to describe
how parameters related to absorption and clearance depend on dosage and type of adjuvant. In Ollier
et al. (2016), for example, non-linear mixed effect models are estimated on strata defined according
to the treatment dosage and the type of adjuvant. In Section 4, we study the association between the
expression of the epidermal growth factor receptor gene, and those of 44 other transcription factors
at eight time points of a differentiation process. We use a data set described in Kouno et al. (2013)
where expression of these factors has been measured by profiling, for each time point, 120 different
single cells. In this application, our aim is to describe how the association between the epidermal
growth factor receptor gene and the other 44 transcription factors varies over these eight strata.

In all these examples, the general objective is to study the relationship between a response
variable y ∈ IR and a vector of p ≥ 1 predictors x = (x1, . . . , xp) ∈ IRp over K ≥ 1 strata defined
according to a categorical covariate Z of primary interest, such as cancer subtype. A key objective
is to determine how Z modifies the effect of x on y, that is to identify and describe interactions
between predictors x and the categorical effect modifier Z (Gertheiss & Tutz, 2012). Identifying
and taking account of these interactions is important even when the assessment of categorical effect
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modification is not the main objective. In particular, estimating one model per stratum or one model
on all the strata pooled together generally leads to overfitting or underfitting, respectively.

For simplicity, we mostly focus on linear regression models. Denote by β∗k = (β∗k,1, . . . , β
∗
k,p) ∈

IRp, for any k ∈ [K] = {1, . . . ,K}, the parameter vector describing the association between y and
x in the model corresponding to stratum Z = k. For any j ∈ [p], denote by dj ∈ [K] the number of
distinct values in the set {β∗1,j , . . . , β∗K,j}. Further consider the partition {K(1)

j , . . . ,K(dj)
j } of [K]

such that β∗k1,j = β∗k2,j if and only if (β∗k1,j , β
∗
k2,j

) ∈ K(d)
j for some d ∈ [dj ]. The full description of

how Z modifies the effect of xj on y relies on the identification of this partition. The total number of
partitions of [K] is the Kth Bell number BK , with, for instance, B5 = 52. Standard statistical test
procedures would require the comparison of (BK)p models for the identification of the p partitions,
so they are not well-suited to fully describe how Z modifies the effect of x on y.

Penalized approaches have been advocated in this context, which can be seen as a special case of
multi-task learning (Evgeniou & Pontil, 2004). In particular, a version of the adaptive generalized
fused lasso (Tibshirani et al., 2005; Viallon et al., 2016) has been shown to enjoy an asymptotic
oracle property if Kp does not grow with the sample size n (Gertheiss & Tutz, 2012; Oelker et al.,
2014). If Kp is fixed then this method identifies partitions {K(1)

j , . . . ,K(dj)
j } for all j ∈ [p] with

probability tending to one as n → ∞, under mild assumptions. However, theoretical results in a
non-asymptotic framework are still lacking for this method. Results obtained by Sharpnack et al.
(2012) for generalized fused lasso estimates in the Gaussian means setting are not straightforward to
extend to our context but they suggest that this method might only be able to identify the partitions
under very particular settings. See Section 2.6 for more details.

An alternative strategy, which is standard in epidemiology, consists in first selecting a reference
stratum, say the first one, then coding the other strata by indicators 1I(Z = k), and finally including
them into the regression model, along with their interactions with the predictors. This corresponds
to considering the decompositions β∗k = β∗1 + δ∗k, for all k ∈ [K], with δ∗1 = 0p, the null vector in
IRp. Then, the lasso (Tibshirani, 1996) can be used to identify null components in vectors β∗1 and
δ∗k, for k 6= 1. Of course, this strategy can generally identify only one element of each partition
{K(1)

j , . . . ,K(dj)
j }. However, a natural question is whether it is sparsistent, that is whether it can

identify the sets S∗1 = {j ∈ [p] : β∗1,j 6= 0} and T ∗1 = {(k, j) ∈ [K] × [p] : β∗k,j 6= β∗1,j} with
high probability. If so, it could partially describe the effect of Z on the association between y and x,
while results of Sharpnack et al. (2012) suggest that the method based on the fused lasso generally
fails to fully describe it.

In this article, we establish that the sparsistency of this basic approach depends on the choice
of the reference stratum. We then present a refined approach which bypasses this arbitrary choice.
Under linear regression models, we show that our proposal is sparsistent under conditions similar to
those ensuring the sparsistency of the approach based on an optimal and covariate-specific choice of
the reference stratum. In addition, our proposal can be implemented with available packages under
a variety of models, at approximately the same computational cost as that of the basic approach.

2. Methods

2.1 Notations and setting

Methods are first presented in the linear regression model for ease of notation. Extensions to gener-
alized linear models (McCullagh & Nelder, 1989) are briefly presented in Section 2.4.
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For any positive integer m ≥ 1, define [m] = {1, . . . ,m}. Let 0m and 1m be the vectors of size
m with components all equal to 0 and 1 respectively, and let Im be for the (m×m) identity matrix.
For any vector x = (x1, . . . , xm)T ∈ IRm, let supp(x) = {j ∈ [m] : xj 6= 0} denote its support.
We further set ‖x‖q = (

∑
j∈[m] |xj |q)1/q for any real number q ∈ (0,∞), ‖x‖∞ = maxj |xj | and

‖x‖0 = |supp(x)|, where |E| is the cardinality of the set E. For any set E ⊆ [m], let xE denote the
vector of IR|E| with components (xj)j∈E . For any real matrix M , let Mj be its jth column, and let
ME be the sub-matrix made of columns (Mj)j∈E . Further denote the smallest singular value of M
by Λmin(M). Finally, 1I(·) is the indicator function.

Denote the number of levels of variable Z, that is the number of strata, by K ≥ 1. Let nk be
the number of observations in stratum k ∈ [K], and denote the total number of observations by
n =

∑
k∈[K] nk. For k ∈ [K], further denote the response vector in stratum k by y(k) ∈ IRnk .

Similarly, let X(k) be the (nk × p) design matrix in stratum k. For all k ∈ [K], we assume that
y(k) = X(k)β∗k + ε(k), with noise vector ε(k) = (ε

(k)
1 , . . . , ε

(k)
nk )T ∈ IRnk . Vectors β∗k ∈ IRp include

the Kp parameters to be estimated.

2.2 Basic approach

A basic approach consists in picking a reference stratum for any j, say `j . Most often in practice,
`j is chosen so that it does not depend on j; here we consider the most general version. Introduce
` = (`1, . . . , `p) ∈ [K]p, µ∗` = (β∗`1,1, . . . , β

∗
`p,p

) and δ∗k = β∗k − µ∗` . The basic approach relies
on the decomposition β∗k = µ∗` + δ∗k, for all k ∈ [K], with δ∗`j ,j = 0 (Gertheiss & Tutz, 2012).
Following the lasso (Tibshirani, 1996), estimates of µ∗` and δ∗k, k ∈ [K], can be defined as

argmin
µ,δ1,...,δK

δ`j ,j=0 for all j∈[p]

{
K∑
k=1

‖y(k) −X(k)(µ+ δk)‖22
2n

+ λ1‖µ‖1 +

K∑
k=1

λ2,k‖δk‖1

}
, (1)

for appropriate non-negative λ1 and λ2,k. As will be seen in Sections 2.5 and 2.6, conditions en-
suring the sparsistency of this approach depend on the arbitrary choice of the vector of reference
strata `. As a matter of fact, the underlying model dimension is ‖µ∗`‖0 +

∑
k 6=` ‖β∗k − µ∗`‖0, which

depends on `. The lowest dimension, and then the best possible performance, is attained if µ∗`j is
a mode of the collection of values (0, β∗1,j , . . . , β

∗
K,j), mode(0, β∗1,j , . . . , β

∗
K,j), for all j ∈ [p]. For

any j ∈ [p], such an optimal and covariate-specific reference stratum will be denoted by `∗j below.
Because `∗ = (`∗1, . . . , `

∗
p) is generally unknown, the corresponding optimal version of the basic

approach cannot be implemented in practice.

2.3 Our proposal

Our proposal aims at bypassing the arbitrary choice of the vector of reference strata `, while mim-
icking the optimal version of the basic approach. We consider an overparametrization involving
(K + 1)p parameters, β∗k = µ∗ + γ∗k for any k ∈ [K]. It generalizes the decomposition used in
the basic approach in the sense that no coefficient is constrained to be zero here. For nonnegative
values of λ1 and λ2,k’s, our proposal returns

(µ̂, γ̂1 . . . , γ̂K) ∈ argmin
µ,γ1,...,γK

{
K∑
k=1

‖y(k) −X(k)(µ+ γk)‖22
2n

+ λ1‖µ‖1 +

K∑
k=1

λ2,k‖γk‖1

}
. (2)
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Working with a large enough value for λ2,r, for some r ∈ [K], is equivalent to constraining γ̂r = 0p,
and then µ̂ = β̂r, and reduces to the basic approach with ` = (r, . . . , r). More generally, setting
τ = (τ1, . . . , τK) with τk = λ2,k/λ1, and defining the shrunk and τ -weighted version of the median
of (b1, . . . , bK) as WSmedian(b1, . . . , bK ; τ) = argminb(|b|+

∑
k∈[K] τk|bk − b|), it is easy to see

that µ̂j ∈ WSmedian(β̂1,j , . . . , β̂K,j ; τ). In other words, for any particular value of the λ2,k/λ1

ratios, our approach encourages solutions (β̂1 = µ̂ + γ̂1, . . . , β̂K = µ̂ + γ̂K) with a sparse vector
µ̂ and sparse vectors of differences γ̂k = β̂k − µ̂, and with the overall effect of the jth covariate µ̂j
defined as WSmedian(β̂1,j , . . . , β̂K,j ; τ).

Moreover, working with a large enough value for λ1 is equivalent to constraining µ̂ = 0p, and
our approach then reduces to K independent lasso’s. In contrast, working with large enough λ2,k

values is equivalent to constraining β̂k = µ̂ for all k, and our approach then reduces to one lasso run
on all the strata pooled together.

2.4 Rewriting as a lasso on a transformation of the original data

Our proposal reduces to the lasso on a simple transformation of the original data, just as the basic
approach does. Set Y = (y(1)T , . . . , y(K)T )T the vector containing the n observations of the
response variable. For any k ∈ [K], introduce P (k)

` = {j ∈ [p] : k 6= `j}, with `j still denoting the
reference stratum chosen for covariate j in the basic approach. Note that

∑
k |P

(k)
` | = (K − 1)p

and set X̃(k)
` = X

(k)

P
(k)
`

. Now introduce

X` =

 X(1) X̃
(1)
` /τ1 . . . 0

...
...

. . .
...

X(K) 0 . . . X̃
(K)
` /τK

 , X0 =

 X(1) X(1)/τ1 . . . 0
...

...
. . .

...
X(K) 0 . . . X(K)/τK

 ,

Criteria to be minimized in (1) and (2) reduce to the lasso

1

2n
‖Y −X θ‖22 + λ1‖θ‖1, (3)

with X set to either X`, for the basic approach, or X0, for our proposal, and θ a vector of IRKp or
IR(K+1)p as appropriate. Therefore, our proposal comes at almost no additional computational cost
compared to the basic approach.

This rewriting as a lasso extends to generalized linear models, Cox models, etc., and makes our
proposal directly implementable using the glmnet package of Friedman et al. (2010), for instance.
Considering logistic models, set Llogistic(y, z) =

∑
i∈[n] yizi− log(1+ezi) for any y ∈ {0, 1}n and

z ∈ IRn. The criterion of our proposal writes as the logistic lasso,−Llogistic(Y ,X0θ) + λ1‖θ‖1. In
addition, the glmnet package can benefit from the sparse structure of X0.

2.5 Sparsistency

From now on we assume that β̄∗j = mode(0, β∗1,j , . . . , β
∗
K,j) is uniquely defined for all j ∈ [p],

for ease of notation. For any vector of reference strata ` = (`1, . . . , `p) ∈ [K]p, introduce the
sets S` = {j ∈ [p] : β∗`j ,j 6= 0} and T` = {(k, j) ∈ [K] × [p] : β∗k,j 6= β∗`j ,j}. Further define
θ∗` = (µ∗T` , τ2γ

∗T
`,2 , . . . , τKγ

∗T
`,K)T ∈ IRKp, with µ∗`,j = β∗`,j and γ∗`,k = (β∗k − µ∗` )P (`)

k

. The
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basic approach is sparsistent if it identifies these two sets, or, equivalently, the set J` = supp(θ∗` ),
with high probability. Now, consider an optimal vector of reference strata `∗ = (`∗1, . . . , `

∗
p) such

that β∗`∗j ,j = β̄∗j for all j ∈ [p]. Define θ∗0 = (µ∗T`∗ , τ1γ
∗T
0,1, . . . , τKγ

∗T
0,K)T ∈ IR(K+1)p where

γ∗0,k = β∗k −µ∗`∗ . We will say our proposal is sparsistent if it identifies S`∗ and T`∗ , or, equivalently,
the set J0 = supp(θ∗0), with high probability.

For the lasso to be sparsistent, a sufficient and almost necessary condition on the design matrix
is the irrepresentability condition (Zhao & Yu, 2006; Wainwright, 2009). Consider the general
formulation (3) of the lasso and denote by θ∗ the true value of the parameter vector to be estimated.
Defining J∗ = supp(θ∗), the matrix X fulfills the irrepresentability condition, with respect to J∗,
if Λmin(X TJ∗XJ∗) ≥ Cmin for some Cmin > 0 and maxj /∈J∗ ‖(X TJ∗XJ∗)−1X TJ∗Xj‖1 < 1. Using the
vector of reference strata ` in the basic approach, the irrepresentability condition of matrix X` writes
as (IC)`, while in our approach, the irrepresentability condition of matrix X0 writes as (IC)0:

(IC)` Λmin(X T`J`X`J`) ≥ C` > 0 and c` = max
j /∈J`
‖(X T`J`X`J`)

−1X T`J`X`j‖1 < 1,

(IC)0 Λmin(X T0J0X0J0) ≥ C0 > 0 and c0 = max
j /∈J0
‖(X T0J0X0J0)−1X T0J0X0j‖1 < 1.

The comparison of (IC)`∗ and (IC)0 is of particular interest. First, because θ∗`∗J`∗ = θ∗0J0 , we have
X`∗J`∗ = X0J0 and Λmin(X T`∗J`∗X`∗J`∗ ) = Λmin(X T0J0X0J0). Second, the maxima in the definitions
of c0 and c`∗ are taken over Jc0 and Jc`∗ , respectively, with |Jc0 | = p+ |Jc`∗ |. Indeed, columns corre-
sponding to γ∗0,`∗j ,j , for j ∈ [p], are present in matrix X0 while they are absent from X`∗ . Moreover,
the corresponding indexes belong to Jc0 since γ∗0,`∗j ,j = 0. Therefore, the only difference between
(IC)0 and (IC)`∗ comes from the fact that c0 ≥ c`∗ , and (IC)0 is only slightly stronger than
(IC)`∗ . Focusing on the case of balanced strata and orthogonal designs in each stratum, Lemma
2 in Section 2.6 states that these two conditions are identical in this particular case. It further ex-
plicitly relates them to the ratios τk = λ2,k/λ1 and to the maximum level of heterogeneity that is
allowed among the collections of values (β∗1,j . . . , β

∗
K,j), for all j ∈ [p]. In addition, they are shown

to be generally weaker than (IC)` for the choice ` = (r, . . . , r), for some r ∈ [K].
We can now state Theorem 1, according to which our proposal identifies S`∗ and T`∗ under

nearly the same assumptions as those required by the optimal version of the basic approach if the
`∗j ’s were given in advance. More precisely, besides the fact that (IC)0 is generally a little stronger

that (IC)`∗ , the only difference lies in the terms (λ
(1)
1 , β

(1)
min) and (λ

(0)
1 , β

(0)
min), whereK+1 replaces

K. Our result is a consequence of Theorem 1 in Wainwright (2009).

Theorem 1 Assume that the noise variables (ε
(k)
i )i∈[nk],k∈[K] are independent and identically dis-

tributed centered sub-Gaussian variables with parameter σ > 0. Further assume that n−1/2
k ‖X(k)

j ‖2 ≤
1 for all (k, j) ∈ [K]× [p]. Introduce τ0 > 0 and set τk = τ0(nk/n)1/2 for all k ∈ [K]. If (IC)`∗

holds then set γ1 = 1− c`∗ . Further set γ0 = 1− c0 if (IC)0 holds. For η ∈ {0, 1}, introduce

λ
(η)
1 >

2

γη min(1, τ0)

{
2σ2 log((K + η)p))

n

}1/2

, β
(η)
min = λ

(η)
1

{
(|S`∗ |+ |T`∗ |)1/2

C`∗
+ 4

σ

C
1/2
`∗

}
.

If (IC)`∗ holds then solutions θ̂`∗ of (3) with X = X`∗ and λ1 = λ
(0)
1 as above are such that,

with probability at least 1− 4 exp(−a0nλ1) for some constant a0 > 0: (i) θ̂`∗ is uniquely defined,
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(ii) θ̂`∗Jc
`∗

= 0|Jc
`∗ |, and (iii) ‖θ̂`∗J`∗ − θ∗`∗J`∗‖∞ ≤ β

(0)
min. If, in addition, |β̄∗j | > β

(0)
min for all

j ∈ S`∗ and |β∗k,j − β̄∗j | > β
(0)
min/τk for all (k, j) ∈ T`∗ , then J`∗ , hence both S`∗ and T`∗ , are

perfectly identified with probability at least 1− 4 exp(−a0nλ
2
1).

If (IC)0 holds then solutions θ̂0 of (3) with X = X0 and λ1 = λ
(1)
1 as above are such that, with

probability at least 1 − 4 exp(−a1nλ1) for some constant a1 > 0: (i) θ̂0 is uniquely defined, (ii)

θ̂0Jc0
= 0|Jc0 |, and (iii) ‖θ̂0J0 − θ∗`∗J`∗‖∞ ≤ β

(1)
min. If, in addition, |β̄∗j | > β

(1)
min for all j ∈ S`∗ and

|β∗k,j − β̄∗j | > β
(1)
min/τk for all (k, j) ∈ T`∗ , then J0, hence both S`∗ and T`∗ , are perfectly identified

with probability at least 1− 4 exp(−a1nλ
2
1).

This result especially confirms that it is harder to identify T`∗ than S`∗ , in the sense that hetero-
geneities have to be at least |β∗k,j − β̄∗j | > (n/nk)

1/2β
(η)
min/τ0 for (k, j) ∈ T`∗ , while |β̄∗j | has only

to be greater than β(η)
min for j ∈ S`∗ .

2.6 The orthogonal and balanced case

It is instructive to inspect in more detail the simple setting where nk = n/K and (X(k)TX(k))/nk =
Ink for all k ∈ [K]. This orthogonality assumption does not make matrices X` and X0 orthogonal
and is therefore not sufficient for the irrepresentability condition.

For any vector of reference strata ` and all j ∈ [p], define K∗`,j = {k ∈ [K] : β∗k,j = β∗`j ,j}. Set
D`,0 = maxj /∈S` |{k ∈ [K] : β∗k,j 6= β∗`j ,j}| if S` 6= [K] and 0 otherwise andD`,1 = maxj∈S` |{k ∈
[K] : β∗k,j 6= β∗`j ,j}| if S` 6= ∅ and −∞ otherwise. For all k ∈ [K], we set τk = τ0K

−1/2, for some
τ0 > 0.

Lemma 2 The matrix X` fulfills the irrepresentability condition if and only if

(sIC)` 0 ≤ K1/2

K − 2D`,1
< τ0 <

K1/2

D`,0
·

The matrix X0 fulfills the irrepresentability condition if and only if

(sIC)0 0 ≤ K1/2

K − 2D`∗,1
< τ0 <

K1/2

D`∗,0
·

Conditions (sIC)0 and (sIC)`∗ in Lemma 2 are identical. In the orthogonal and balanced
case, the two sets of assumptions required by our proposal and the optimal version of the basic
approach to identify the sets S`∗ and T`∗ are therefore identical, except for the terms (λ

(1)
1 , β

(1)
min)

and (λ
(0)
1 , β

(0)
min) where K + 1 replaces K, as in Theorem 1 above.

In addition, (sIC)`∗ , or equivalently (sIC)0, imposes that 2D`∗,1 + D`∗,0 < K. In particular,
if D`∗,1 = D`∗,0 = D`∗ , this implies that D`∗ < K/3. The irrepresentability conditions (sIC)`∗

and (sIC)0 are therefore directly related to the maximum level of heterogeneity among the values
(β∗1,j , . . . , β

∗
K,j). Similarly, (IC)` imposes 2D`,1 + D`,0 < K, which is generally a stronger con-

straint. For simplicity, consider the situation where ` = (r, . . . , r) for some r ∈ [K], which is a
common choice in practice. Without loss of generality, set r = 1. Then (IC)` entails that, for
each j ∈ [p], the effect of the jth covariate on most strata is β∗1,j , while (sIC)`∗ and (sIC)0 only
entail that, for each j ∈ [p], the effect of the jth covariate on most strata is mode(0, β∗1,j , . . . , β

∗
K,j).
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Moreover, if ` = (1, . . . , 1) and {1} /∈ ∩j∈[p]K
∗
`∗,j then we have T` 6= T`∗ and, possibly, S` 6= S`∗ :

the identification of T` and S` is both less interesting and less likely and our proposal should be
preferred over the basic approach.

To recap, our non-asymptotic analysis shows that the partial description of the categorical effect
modification due to Z through decompositions of the type β∗k = µ∗ + γ∗k is guaranteed only when
the level of heterogeneity is not too high, that is when the number of nonzero components in vectors
(γ∗1,j , . . . , γ

∗
K,j), for j ∈ [p], is not too high. In particular, the lowest level of heterogeneity is

attained for the choice µ∗j = mode(0, β∗1,j , . . . , β
∗
K,j). Our proposal is able to target this optimal

decomposition and is sparsistent under nearly the same assumptions as those required for the optimal
version of the basic approach.

2.7 Connection with the generalized fused lasso

The fact that the level of heterogeneity must be low to ensure the sparsistency of our proposal as well
as the sparsistency of the optimal version of the basic approach has connections with other results
in the literature. Consider for instance the approach mentioned in Section 1, which was proposed by
Gertheiss & Tutz (2012); see also Oelker et al. (2014) and Viallon et al. (2016). This is based on a
fusion penalty that encourages similarities among solutions β̂k ∈ IRp, k ∈ [K]. More precisely, for
appropriate non-negative λ1 and λ2’s, it returns estimators β̂k defined as minimizers of the criterion

∑
k∈[K]

‖y(k) −X(k)βk‖22
2n

+ λ1

∑
k∈[K]

‖βk‖1 + λ2

∑
k1<k2

‖βk1 − βk2‖1. (4)

This criterion is that of the generalized fused lasso, where the graph used in the penalty is made of p
cliques of sizeK (Viallon et al., 2016). The jth clique corresponds to the jth predictor and connects
all the components in (β1,j , . . . , βK,j): the K(K − 1)/2 differences |βk1,j − βk2,j |, for k1 < k2,
appear in the penalty term.

Both the basic approach and our proposal are related to generalized fused lasso estimates too.
In particular, consider criterion (1) with the optimal choice `∗ for the vector of reference strata. It
can be seen as a version of a generalized fused lasso, with a graph made of p star-graphs of size K
instead of p cliques: for each j ∈ [p], only the K − 1 differences |βk,j −β`∗j ,j | appear in the penalty
term, for k 6= `∗j and `∗j ∈ [K] fixed.

Non-asymptotic analyses of the sparsistency of generalized fused lasso estimates are scarce in
the literature. Sharpnack et al. (2012) study them in the normal means setting, which can be seen as
a special case of the stratified linear regression considered here. Sharpnack et al. (2012) establish
that generalized fused lasso estimates are sparsistent only if the graph used in the fused penalty is
in good agreement with the true structure of the vector of parameters; see also Qian & Jia (2016).
Although it is not straightforward to extend to our case, these results suggest that estimates derived
from (4) can only be sparsistent if the level of heterogeneity is not too high.

Our results precisely quantify the maximum level of heterogeneity above which a version of
generalized fused lasso estimates, based on star-graphs, can attain sparsistency in stratified regres-
sion, in the balanced and orthogonal case. Because star-graphs are less connected than cliques, it is
likely that sparsistency for clique-based estimates, such as those minimizing criterion (4), requires
an even lower maximum level of heterogeneity. That being said, sparsistency for clique-based es-
timates refers to the full identification of the partitions {K(1)

j , . . . ,K(dj)
j }, for j ∈ [p]. For the
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basic approach, its optimal version and our proposal, sparsistency refers to the identification of one
element of this partition only, say K(1)

j , and its complementary [K] \ K(1)
j .

In the asymptotic regime, assuming that Kp is fixed and nk/n → ρk for some ρk ∈ (0, 1),
for all k ∈ [K], oracle properties have been derived for adaptive versions of clique-based estimates
under mild assumptions (Gertheiss & Tutz, 2012): in particular, no assumption regarding the level
of heterogeneity is required to ensure perfect recovery of the full partition {K(1)

j , . . . ,K(dj)
j }, for

all j ∈ [p]. Similar results are easily derived for adaptive versions of the basic approach for in-
stance. In view of (3), we can apply Theorem 2 of Zou (2006) to show that an adaptive version of
the basic approach enjoys an oracle property too, without having to assume any irrepresentability
condition. Here again, no assumption regarding the maximum level of heterogeneity is required,
but the identification of only one element of the partition is guaranteed for all j.

To recap, clique-based estimates are optimal and should be preferred over our proposal or the
basic approach in the asymptotic regime, assuming that Kp is fixed and nk/n → ρk for some
ρk ∈ (0, 1), for all k ∈ [K]. In a non-asymptotic setting, results for clique-based estimates are
still lacking, while conditions ensuring the sparsistency of our proposal and the basic approach are
established in the present article. In the following simulation study, we especially compare the
clique-based strategy and our proposal on finite samples.

3. Simulation Study

Theorem 1 states that our proposal and the optimal version of the basic approach perform similarly
with regard to the identification of S`∗ and T`∗ for appropriate values of λ1 and τ0, under technical
assumptions on the design matrices. The main objective of this simulation study is to assess the
empirical performance of our proposal under general designs, and for λ1 and τ0 selected by 5-fold
cross-validation. Comparisons are made with the basic approach with the choice ` = (1, . . . , 1) as
well as an optimal choice `∗. Clique-based estimates are also considered.

We set K = 20 and take nk ∈ {10, 50, 100} and p ∈ {20, 100, 500}. For each k ∈ [K], rows of
the design matrix X(k) are drawn from anN (0p,Σ) distribution, with Σ the (p×p) Toeplitz matrix
with element (i, j) equal to 0.5|i−j|. We then randomly select a subset P0 ⊂ [p] of size 20 and set
β∗k,j = 0 for all j /∈ P0 and k ∈ [K]. As for the values (β∗1,j , . . . , β

∗
K,j) for j ∈ P0, we consider

four levels of heterogeneity dH . More precisely, for any given dH ∈ {1, 3, 6, 9}, we set β∗k,j = 1
for k > dH , and β∗k,j = 1 + δ∗k,j for k ≤ dH for 10 indexes j randomly selected in P0. For the
other 10 indexes in P0, we set β∗k,j = 1 for k ≤ dH , and β∗k,j = 1 + δ∗k,j for k > dH . We further
consider two cases for the δ∗k,j values: they are either constantly set to K1/2 or drawn from the
uniform distribution on [K1/2/2, 2K1/2] and then multiplied by ±1 (with probability 1/2). When
the δ∗k,j’s are constant, the collection of values (β∗1,j , . . . , β

∗
K,j) for each covariate j ∈ P0 is made

of two groups of distinct values, of sizes K − dH and dH . This situation should favor clique-based
estimates. When δ∗k,j is random, the collection of values (β∗1,j , . . . , β

∗
K,j) for each covariate j ∈ P0

is made of dH+1 groups, one of sizeK−dH , and the other dH of size 1. This situation should favor
our proposal and the optimal version of the basic approach. Observations of the response variable
are then generated according to y(k) = X(k)β∗k + ε(k), with each component of ε(k) drawn from
an N (0, σ2) distribution. The variance σ2 is set to

∑
k∈[K] ‖X(k)β∗k‖22/n, giving overall signal-

to-noise ratio equal to 1. For each particular choice of nk ∈ {10, 50, 100}, p ∈ {20, 100, 500}
and dH ∈ {1, 3, 6, 9}, and for both the random and constant choice for the δ∗k,j’s, we generate 50
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replicates of data (X(k), y(k)), k ∈ [K]. Our results correspond to averages over these 50 replicates;
see Figure 1.

In all the configurations, β∗20,j = mode(0, β∗1 , . . . , β
∗
20,j) for all j ∈ [p]. We then set `∗j =

20 for all j ∈ [p] for the optimal version of the basic approach. On the other hand, β∗1,j 6=
mode(0, β∗1 , . . . , β

∗
20,j) for all j ∈ P0. Under this setting, which is of course extreme, the com-

parison between the results obtained using either ` or `∗ for the reference strata allows a precise
description of the impact of the reference stratum on the performance of the basic approach. Top
panels of Figure 1 present results regarding the identification of the sets T ∗P0

= {(k, j) ∈ [K]×P0 :
β∗k,j 6= β∗`∗j ,j

} for the optimal version of the basic approach, our proposal and clique-based esti-
mates, and that of the set T ∗1,P0

= {(k, j) ∈ [K] × P0 : β∗k,j 6= β∗1,j} for the basic approach. Here,
we only consider covariates in P0 because they are those that are the most differently accounted for
by the four approaches we compare.

In the constant δ∗k,j case, our empirical results clearly illustrate our theoretical ones. First, our
proposal performs nearly as well as the optimal version of the basic approach. Second, the lower
dH , the better they perform, as expected since dH = D1 and D0 = 0 here. Third, it is more difficult
to recover T ∗1,P0

than T ∗P0
, which is also expected since D(1)

1 = K − dH > D1. For the same
reason however, as dH increases, T ∗1,P0

is easier to recover. A nice symmetry appears between the
performance of our proposal and the optimal version of the basic approach on the one hand and the
basic approach using ` = (1, . . . , 1), on the other hand. In addition, the recovery of the sets T ∗P0

and T ∗1,P0
is only marginally affected by p. Results in the random δ∗k,j case are mostly consistent

with those in the constant case, except for the recovery of T ∗1,P0
which is mostly due to the fact that

T ∗1,P0
= [K − 1] × P0 irrespective of dH in this random case. Finally, the clique-based strategy

performs similarly to, or a little worse than, our proposal with respect to this criterion.
The bottom panels of Figure 1 present results regarding log(

∑
k∈[K] ‖X(k)(β∗k − β̂k)‖22/n)

(Dalalyan et al., 2017), which is a measure of the prediction error. Overall, our proposal and the
optimal version of the basic approach perform similarly. They both outperform the basic approach,
especially in the random δ∗k,j case. The clique-based strategy outperforms our proposal in the con-
stant δ∗k,j case if dH is high enough, but only when the nk/p ratio is not too small. In the random δ∗k,j
case, our proposal clearly outperforms the clique-based strategy when p = 500, and more generally
as dH increases and/or the nk/p ratio decreases. These results suggest that the clique-based strategy
might not be able to fully account for, nor benefit from, the true structure in a high-dimensional set-
ting. They also suggest that our proposal is better suited for this high-dimensional setting, as long
as heterogeneity is not too high.

4. Application on single-cell data

We analyse data describing mielocytic leukemia cells undergoing differentiation to macrophage.
Expression levels of 45 transcription factors are measured at K = 8 distinct time points of this
differentiation process (H0, H1, H6, H12, H24, H48, H72 and H96). Each time point defines a
stratum where data on nk = 120 single cells are available. This data set is described in Kouno
et al. (2013). In this application, the main objective is to determine how associations among the
45 transcription factors vary over time. Kouno et al. (2013) focus on marginal associations and use
univariate analyses while graphical models, which describe conditional associations, might be bet-
ter suited. Their inference can be reduced to the identification and description of the neighborhood
of each covariate (Meinshausen Bühlmann, 2006). Here, as a first step, we study how the neighbor-

9



Constant

dH = 1

Constant

dH = 3

Constant

dH = 6

Constant

dH = 9

Random

dH = 1

Random

dH = 3

Random

dH = 6

Random

dH = 9

0.25

0.50

0.75

0.25

0.50

0.75

0.25

0.50

0.75

1.00

2

3

4

5

2

3

4

5

2

3

4

5

A
ccuracy

A
ccuracy

A
ccuracy

P
rediction error

P
rediction error

P
rediction error

p
=

20
p

=
100

p
=

500
p

=
20

p
=

100
p

=
500

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100
Stratum Size nk

P
er

fo
rm

an
ce

 M
ea

su
re

Figure 1: Results from the simulation study. The top three panels show the accuracy regarding the
recovery of the set T ∗1,P0

= {(k, j) ∈ [K]× P0 : β∗k,j 6= β∗1,j} for the basic approach and
the set T ∗P0

= {(k, j) ∈ [K] × P0 : β∗k,j 6= β∗`∗j ,j
} for the other approaches. The higher,

the better. The bottom three panels illustrate the prediction error; the lower, the better.
Results are presented for both the constant and random δ∗k,j cases. All results correspond
to averages over 50 replicates in each configuration. Solid line: our proposal. Dotted
line: optimal version of the basic approach. Dash-dot line: basic approach. Dashed line:
clique-based approach.

hood of one particular transcription factor, EGR2, varies over time. Towards this end, we consider
stratified linear regression models that relates EGR2 to the other p = 44 factors on the K = 8
strata. Expression levels of EGR2 are centered within each stratum, and no intercept is included
in the models. Then, parameters of interest are vectors β∗1 , . . . , β

∗
8 , where β∗k ∈ IR44 describes the

association between EGR2 and the p = 44 transcription factors at the kth time point. We compare
estimates returned by our proposal and four competitors. The basic approach is considered with
two distinct choices for the reference stratum: we set it to either H0 or H96 for each covariate.
We further consider the clique-based strategy. Finally, given the ordinal nature of the strata in this
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particular example, the variant based on chain graphs (Gertheiss & Tutz, 2012) can be seen as the
reference method. We include it as well, even if our main objective in this illustrative application
is to compare the other four approaches, which do not account for this additional information. For
each approach, regularization parameters are selected by 5-fold cross-validation.

Basic approach, H0 Basic approach, H96 Chain−based Clique−based Our proposal

CBFB
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CEBPD
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−5.0−2.5 0.0 2.5 5.0

Figure 2: Estimation of the K = 8 parameter vectors in the linear regression models describ-
ing the association between EGR2 and the p = 44 other transcription factors, at times
H0, H1, H6, H12, H24, H48, H72 et H96. Each column corresponds to the estimation
obtained according to one of the five considered approaches : the basic approach with
the reference stratum set to either H0 or H96 for every covariate, two versions of the
generalized fused lasso estimates, one based on cliques and one based on chain graphs,
and our proposal.
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Results are presented in Figure 2. For each method, the estimates correspond to a 44 × 8
matrix of the form (β̂1, . . . , β̂K) with K = 8 and β̂k ∈ IR44 for any k ∈ [K]. Therefore, for
any j ∈ [p], the jth row of each matrix corresponds to estimates (β̂1,j , . . . , β̂K,j) of the effect of
the jth covariate over the K time points, returned by the corresponding approach. This heat map
representation allows an easy comparison of the pattern identified among the effects (β̂1,j , . . . , β̂K,j)
of each covariate across the 8 strata. Our first objective is to illustrate the impact of the reference
stratum when using the basic approach. Considering for instance the association between EGR2
and MYB, most approach identify the same pattern: the association is constant between H1 and
H96, while it is lower, or even null, at H0. However, setting the reference stratum to H0, the basic
approach does not detect any heterogeneity. These results are consistent with what is expected if
the true pattern is the one identified by the other approaches: the basic approach used with H0 as
the reference stratum is unlikely to identify the heterogeneity if it occurs at H0. Now consider the
association with ELK1. Our proposal, the basic approach with H0 as the reference stratum and
the strategy based on chain graphs all suggest the absence of association between EGR2 and ELK1
on the time interval H0 and H72, and a positive association at H96. If the reference stratum is
set to H96, the basic approach suggests a quite different pattern, which is again expected if the
true pattern is the one returned by the other approaches. These results confirm that the reference
stratum is critical for the basic approach. They further suggest that our proposal is able to identify
appropriate covariate-specific reference strata.

The comparison of the patterns returned by our approach and the two fused lasso strategies
mostly highlights that the clique-based strategy identifies fewer heterogeneities and that strategy
based on chain graphs returns smoother patterns. Again, these results were expected given the
connectivity of the clique and chain graph, respectively. Prediction error was evaluated by double
5-fold cross-validation. Among the approaches that do not account for the ordering of the strata, the
best prediction error is obtained with our proposal, while the worst is 1.8% higher and is obtained
with the clique-based strategy. The chain graph strategy leads to an improvement of 1.8% compared
to our approach.

Two main conclusions can be drawn. When data come from several strata of the population and
no information is available regarding which strata are likely to share similar effects, our proposal is
a competitive approach. When additional information is available, as in this particular application
where strata are naturally ordered, accounting for it can be beneficial.

5. Discussion

After submitting a first version of this work, we became aware of concurrent work by Gross &
Tibshirani (2016) where the authors introduce similar ideas. They apply it, in particular for the uplift
problem in clinical research where the objective is to find sub-populations in a randomized trial for
which an intervention is beneficial. In addition, there has been a recent line of works on penalized
approaches aiming at identifying interactions, not necessarily between a categorical covariate and
other predictors (Lim & Hastie , 2015; Radchenko & James, 2010). In this general context, strong
hierarchy is often imposed: whenever an interaction between two variables is included in the model,
the corresponding main effects are included too. However, this strong hierarchy is not desirable
in our setting, where a coefficient can be nonzero in only one of the strata (Gross & Tibshirani,
2016). Moreover, when applied in our setting, these approaches can be seen as versions of the basic
approach (1) based on extensions of the L1-norm penalty. In particular, a reference stratum has to
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be chosen as a first step, and the performance of these approaches would depend on this arbitrary
choice. For instance, Radchenko & James (2010) establish assumptions under which their approach
is sparsistent. When applied with the reference strata `, their main condition on the design matrix is
very similar to (IC)`, which is generally stronger than (IC)`∗ and (IC)0. Then, these approaches
could benefit from the ideas we developed in this article.

Our proposal is based on an overparametrization, which naturally raises the question of iden-
tifiability. We refer to Gross & Tibshirani (2016) for some discussion. We shall add that there is
no identifiability issue under the conditions of Theorem 1. If these conditions do not hold, and in
particular if (IC)`∗ is not fulfilled, even the optimal version of the basic approach is not sparsistent,
and the identifiability issue related to the overparametrization is secondary.

Prediction bounds for our proposal can be derived under the conditions presented in this work.
But weaker conditions might be sufficient, following recent work studying the lasso for correlated
designs (Dalalyan et al., 2017). Another extension might concern the derivation of valid p-values
or confidence intervals for the nonzero parameters identified by our proposal. Given its connection
with the lasso, this post-selection inference might be derived by extending recent strategies proposed
for lasso estimates (Lee et al., 2016).

We also plan to extend our proposal to other regression models, which is straightforward for
a variety of models given its connection with the lasso. In particular, our proposal could easily
be extended to stratified Cox models used in survival analysis when competing risks arise (Rosner
et al., 2013), or to the conditional logistic models used in case-controls studies (Reid & Tibshirani,
2014). The extension of clique-based estimates to other models is generally more computationally
burdensome, partly because there is no proximal operator for the fused penalty.
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Supplementary material

Supplementary material available at Biometrika online includes two sections. Section 1 presents
technical details: the proof of Lemma 1 and a generalized version of Lemma 1, the version of
Theorem 1 in the balanced and orthogonal design along with its proof, and two corollaries describing
the particular cases where S`∗ = ∅ and T`∗ = ∅. Section 2 presents additional results from our
empirical study: accuracies for the recovery of other sets of interest in the settings described heres,
and additional results obtained under an alternative settings which should favor the clique-based
strategy.
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Appendix: Supplementary Files

5.1 Technical details

5.1.1 PROOF OF LEMMA 1

Lemma 1 is established for matrix X0; the proof for X` follows from similar arguments and is
omitted.

Fix τ0 > 0 and set τk = τ0K
−1/2 for all k ∈ [K]. Recall that θ∗0 = (µ∗`∗

T , τ1γ
∗
0,1

T , . . . , τKγ
∗
0,K

T )T ,
with µ∗`∗j = β∗`∗j ,j

for j ∈ [p], and J0 = {j ∈ [(K + 1)p] : θ∗0j 6= 0}. For the sake of brevity, the
proof is only presented in the case where S`∗ 6= ∅ and T`∗ 6= ∅, where S`∗ = {j ∈ [p] : µ∗`∗j 6= 0}
and T`∗ = {(k, j) : β∗k,j 6= µ∗`∗j}. Setting T ∗k = {j ∈ [p] : (k, j) ∈ T`∗} and Σ

(k)
S`∗ ,Tk

= X
(k)T

S`∗
X

(k)
Tk

we have
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
.

For any s ∈ [|S`∗ |] and t ∈ [|T ∗k |], denote the sth element of S`∗ by S`∗s and the tth element
of T ∗k by T ∗k,t. For all j ∈ S`∗ , further denote by N∗j = n|K∗j |/K the number of observations
in strata contained in K∗j = {k ∈ [K] : β∗k,j = β∗`∗j ,j

}. Now introduce C, the matrix of size
|T`∗ | × |S`∗ | made of K blocks Ck. Each block is of size |T ∗k | × |S`∗ |, and the element (t, s) of Ck
is (Ck)(t,s) = −τk/N∗S`∗s if S`∗s = T ∗k,t and 0 otherwise (s ∈ [|S`∗ |] and t ∈ [|T ∗k |]).
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For k, ` ∈ [K] and k 6= `, further introduce Bk1,k2 , the matrix of size |T ∗k1 |× |T
∗
k2
| with element

(t1, t2) equal to τk1τk2/N
∗
S`∗s

if T ∗k1,t1 = T ∗k2,t2 = S`∗s for some s ∈ [|S`∗ |], and 0 otherwise. For
k ∈ [K], denote by Bk,k the diagonal matrix of size |T ∗k | × |T ∗k | with tth diagonal term equal to
τ2
k (N∗S`∗s + nk)/(N`∗snk) if T ∗k,t = S`∗s for some s ∈ [|S∗|] and τ2

k/nk otherwise. Finally denote
by D the diagonal matrix of size |S`∗ | × |S`∗ | with jth diagonal term equal to 1/N∗j , and by B the
matrix of size |T`∗ | × |T`∗ | made of K2 blocks, with block (k1, k2) equal to Bk1,k2 . By standard
algebra, we have

(X T0J0X0J0)−1 =

(
D CT

C B

)
.

Now, for any j /∈ J0, the jth column X0j of X0 is of the form either (A) or (B):

(A) X0j = (0T , . . . , 0T , X
(k0)T

j0
, 0T , . . . , 0T )T for some k0 ∈ [K] and some j0 /∈ T ∗k0 ,

(B) X0j = (X
(1)T

j0
, . . . , X

(K)T

j0
)T for some j0 /∈ S`∗ .

If X0j is of form (A), then X0j
TX0J0 = (d̄T , 0T|T ∗1 |

, . . . , 0T|T ∗K |
) ∈ IR|J0| with d̄ ∈ IR|S`∗ | and

d̄s =

{
nk0/τk0 if j0 = S`∗s,
0 otherwise.

Therefore, if X0j is of form (A), we have

‖X0j
TX0J0(X0J0

TX0J0)−1‖1 ≤ max
j∈S`∗

max
k∈K∗j

nk
τkN

∗
j

(1 +
∑
`/∈K∗j

τ`).

If X0j is of form (B), then X T0jX0J0 = (0|S`∗ |, d1, . . . , dK)T ∈ IR|J0|, with dk ∈ IR|T
∗
k | and

dk,t =

{
nk/τk if j0 = T ∗k,t,

0 otherwise.

In this case, we have
‖X0j

TX0J0(X0J0
TX0J0)−1‖1 ≤ max

j /∈S`∗

∑
`/∈K∗j

τ`.

Moreover, under the setting considered in Lemma 1 we have nk = n/K for all k ∈ [K] and
τk = τ0K

−1/2. Therefore, maxj /∈J0 ‖X0j
TX0J0(X0J0

TX0J0)−1‖1 < 1 if and only if assumption
(sIC)0 holds, which completes the proof of Lemma 1 for matrix X0.

5.1.2 VERSION OF THEOREM 1 IN THE SETTING OF ORTHOGONAL DESIGNS AND BALANCED

STRATA

Theorem 3 below is the version of Theorem 1 in the setting considered in Lemma 1, where nk =
n/K and (X(k)TX(k))/nk = Ink for all k ∈ [K]. We set D0 = D`∗,0 and D1 = D`∗,1; see Section
2.6 in the main text for the corresponding definitions.
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Theorem 3 For all k ∈ [K], assume that the noise variables ε(k)
i , i ∈ [nk], are independent and

identically distributed centered sub-Gaussian variables with parameter σ > 0. Further assuming
that (sIC)0 holds, define

γ = min

(
1−D0τ0K

−1/2, 1− K1/2 +D1τ0

(K −D1)τ0

)

and

Cmin = min

(
1, τ−2

0 ,
1

2

[(
τ−2

0 + 1
)
−
{(

τ−2
0 − 1

)2
+

4D1

τ2
0K

}])
.

For η ∈ {0, 1}, we set

λ
(η)
1 >

2

γmin(1, τ0)

[
2σ2 log((K + η)p)

n

]1/2

, λ
(η)
2,k = τkλ

(η)
1 .

Finally introduce β(η)
min = λ

(η)
1 [(|S`∗ |+|T`∗ |)1/2C−1

min+4σC
−1/2
min ], and consider the following β-min

conditions:

(C
β
(η)
min

)(i) : ∀j ∈ S`∗ , |β̄∗j | > β
(η)
min; (C

β
(η)
min

)(ii) : ∀j ∈ [p],∀k /∈ K∗j , |β∗k,j−β̄∗j | >
K1/2β

(η)
min

τ0
.

Then, S`∗ and T`∗ are both recovered
• with probability superior to 1 − 4 exp(−c1nλ

(0)2

1 ), for some c1 > 0, by the optimal version
of the basic approach run with λ1 = λ

(0)
1 and λ2,k = λ

(0)
2,k under (C

β
(0)
min

)(i, ii) and we have

‖θ̂`∗J`∗ − θ
∗
J`∗
‖∞ ≤ β(0)

min;

• with probability superior to 1 − 4 exp(−c1nλ
(1)2

1 ), for some c1 > 0, by our approach run
with λ1 = λ

(1)
1 and λ2,k = λ

(1)
2,k under (C

β
(1)
min

)(i, ii) and we have ‖θ̂0J0 − θ∗0J0‖∞ ≤ β
(1)
min.

Consider the asymptotic setting with K, and possibly p, tending to infinity as n → ∞. Further
assume that D`∗,0 = D`∗,1 = D`∗ . If D`∗ � K1/2 or D`∗ = cK1/2 for some 0 < c ≤ 1/2, then
τ0 = 1 ensures perfect recovery for signals such that β(η)

min = O(n−1/2[(|S`∗ | + |T`∗ |) log((K +
1)p)]1/2), which is optimal up to log-terms. If D`∗ = cK1/2 for some c > 1/2, we get the same
order of magnitude for β(η)

min, but with τ0 = (2c)−1 < 1. If K1/2 � D`∗ , then the regime changes.
For K1/2 � D`∗ � K the optimal choice is τ0 = K1/2/(2D`∗) which only ensures perfect
recovery for β(η)

min = O((nK)−1/2D`∗ [(|S`∗ |+ |T`∗ |) log((K + 1)p)]1/2). Finally, if D`∗ = cK for
some 0 < c < 1/3, then the result of Theorem S1 becomes almost meaningless: the optimal τ0 is
O(K−1/2) which only ensures perfect recovery for β(η)

min = O(n−1/2[K(|S`∗ | + |T`∗ |) log((K +
1)p)]1/2).

5.1.3 PROOF OF THEOREM 3

In view of Lemma 1, and because X`∗J`∗ = X0J0 , we simply have to compute Λmin((X T0J0X0J0/n))
in order to apply Theorem 1 of Wainwright (2009) and establish Theorem 3. To do so, we look for
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solutions of the characteristic polynomial of the matrix (X T0J0X0J0/n), p(λ) = det(X T0J0X0J0/n−
λI|J0|). Using the block structure of matrix (X T0J0X0J0/n−λI|J0|), we get the following expression

p(λ) = (1− λ)r1(τ−2 − λ)r2
∏

j∈S∗∩{∪kT ∗k }

(
λ2 − λ(τ−2 + 1) + τ−2

(
1−

n−N∗j
n

))
,

with r1 = |S`∗\{∪kT ∗k }| and r2 = |J0|−|S`∗ |−|S`∗∩{∪kT ∗k }|. It follows that Λmin((X T0J0X0J0/n)) ≥
min

(
1, τ−2, 1

2

[
(τ−2 + 1)− {(τ−2 − 1)2 + 4D1τ

−2/K}1/2
])

. Denote by |‖M‖|∞ the maximum
row sum matrix norm of matrixM , and by |‖M‖|2 its spectral norm. Because |‖(X T0J0X0J0/n)‖|∞ ≤
|J0|1/2|‖(X T0J0X0J0/n)‖|2 ≤ (|S`∗ | + |T`∗ |)1/2/Cmin, Theorem 3 now follows from Theorem 1 of
Wainwright (2009).

5.1.4 GENERALIZATION OF LEMMA 1

Here, we do not consider the orthogonal and balanced setting anymore and present general con-
ditions ensuring that the irrepresentability conditions (IC)` and (IC)0 are fulfilled by the design
matrices X` and X0 involved in the basic approach and our proposal, respectively. For all k ∈ [K],
we assume that τk = τ0(nk/n)1/2 for some τ0 > 0 and that n−1/2

k ‖X(k)
j ‖2 ≤ 1 for all (j) ∈ [p].

For X equal to either X` or X0, this ensures that n−1‖Xj‖2 ≤ max(1, τ−1), for each column Xj of
X .

For any given vector of reference strata ` ∈ [K]p and any j ∈ [p], set K̄`,j = {k ∈ [K] : β∗k,j =

β∗`j ,j} and K`,j = K̄`,j \ {`j}. Further set, for any k ∈ [K], T`,k = {j ∈ [p] : β∗k,j 6= β∗`j ,j}, Σ`,k =

X
(k)T
T`,k

X
(k)
T`,k

, Π`,k = X
(k)
T`,k

Σ−1
`,kX

(k)T
T`,k

, andZ(k)
`,j = (Ink−Π`,k)X

(k)
j . Define ω(k)

`,j = Σ−1
`,kX

(k)T

T`,k
X

(k)
j

and Ω
(k)
` = Σ−1

`,kX
(k)T

T`,k
X

(k)
S`

. Introduce the quantities Σ̃` =
∑

k∈[K]X
(k)T
S`

(Ink − Π`,k)X
(k)
S`

and

Ω̃
(k)
`,j = Σ̃−1

` X
(k)T
S`

Z
(k)
`,j . Finally set

c1(`) = max
j∈Sc`

‖ ∑
k∈[K]

Ω̃
(k)
`,j ‖1 +

∑
k∈[K]

τk‖
∑
l∈[K]

Ω
(l)
` Ω̃

(k)
`,j ‖1


c2(`) = max

j∈[p]
max
k∈K`,j

‖Ω̃
(k)
`,j ‖1
τk

+
∑
l 6=k

τl
τk
‖Ω(l)

` Ω̃
(k)
`,j ‖1 + ‖ω(k)

`,j + Ω
(k)
` Ω̃

(k)
`,j ‖1


c̄2(`) = max

j∈[p]
max
k∈K̄ ,̀j

‖Ω̃
(k)
`,j ‖1
τk

+
∑
l 6=k

τl
τk
‖Ω(l)

` Ω̃
(k)
`,j ‖1 + ‖ω(k)

`,j Ω
(k)
` + Ω̃

(k)
`,j ‖1

 .

Lemma 4 Let ` ∈ [K]p be a given vector of reference strata. Assume that Λmin(Σ`,k) > 0 for
k ∈ [K] and Λmin(Σ̃`) > 0. Condition (IC`) holds if and only if c1(`) < 1 and c2(`) < 1.

Assume that Λmin(Σ`∗,k) > 0 for k ∈ [K] and Λmin(Σ̃`∗) > 0. Condition (IC)0 holds if and
only if c1(`∗) < 1 and c̄2(`∗) < 1.

The proof of Lemma 4 follows from the same arguments as those presented in Section 5.1.1 for the
proof of Lemma 1, and is omitted. Again, the conditions ensuring that (IC)`∗ and (IC)0 hold are
very similar. This shows that our proposal is able to mimic the optimal version of the basic approach
even when the designs are not orthogonal or strata are not balanced.
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5.1.5 OTHER RESULTS

Corollary 5 and Corollary 6 consider the two special cases where T`∗ = ∅ and S`∗ = ∅, respectively.

Corollary 5 Assume that the noise variables (ε
(k)
i )i∈[nk],k∈[K] are independent and identically cen-

tered sub-Gaussian variables with parameter σ > 0. Define X = (X(1)T , . . . , X(K)T )T , the n× p
matrix with all the strata pooled together. Set τk = τ0(nk/n)1/2 > 0 for all k ∈ [K], for some
τ0 > 0. For all j ∈ [p], assume that there exists some β∗j ∈ IR such that β∗k,j = β∗j for all k ∈ [K]

and set S`∗ = {j ∈ [p] : β∗j 6= 0}. Further assume that Λmin(XTS`∗XS`∗/n) ≥ Cmin for some

Cmin > 0, and that n−1/2
k ‖X(k)

j ‖2 ≤ 1 for all (k, j) ∈ [K] × [p]. Finally assume that the three
following conditions hold:

(Ã)
∑
k∈[K]

τk > 1,

(C̃.i.1) c̃1 := max
j /∈S∗
‖(XTS`∗XS`∗ )

−1XTS`∗Xj‖1 < 1,

(C̃.ii) c̃2 := max
j∈[p]

max
k∈[K]

τ−1
k ‖(X

T
S`∗

XS`∗ )
−1X

(k)T

S`∗
X

(k)
j ‖1 < 1.

Now, set γ̃ = (1− c̃1) ∧ (1− c̃2) and

λ1 =
2

(1 ∧ τ0)γ̃

{
2σ2 log((K + 1)p)

n

}1/2

, βmin = λ1

(
|S`∗ |1/2

Cmin
+ 4σC

−1/2
min

)
.

Then our proposal run with parameters λ1 and λ2,k = τkλ1 identifies S`∗ and T`∗ = ∅ with
probability at least 1− 4 exp(−c1nλ

2
1) for some c1 > 0, as long as minj∈S∗ |β∗j | > βmin.

Condition (C̃.i.1) is exactly the irrepresentability condition on matrix X, while conditions (C̃.ii)
and (Ã), which are very similar, both simply require that τ0 is high enough. Moreover, γ = 1− c̃1

and 1∧τ0 = 1 for τ high enough. Therefore, our proposal mimics the lasso run on (X,Y ) provided
τ0 high enough and is optimal, up to log-terms, when the β∗k’s are all equal.

Corollary 6 Assume that the noise variables (ε
(k)
i )i∈[nk],k∈[K] are independent and identically cen-

tered sub-Gaussian variables with parameter σ > 0. Set τk = τ0(nk/n)1/2 > 0 for all k ∈ [K],
for some τ0 > 0. For all j ∈ [p], set K∗j = {k ∈ [K] : β∗k,j = 0} and for all k ∈ [K], set

T ∗k = {j ∈ [p] : β∗k,j 6= 0}. Assume that mink{Λmin(X
(k)T

T ∗k
X

(k)
T ∗k
/nk)} ≥ Cmin for some Cmin > 0,

and that n−1/2
k ‖X(k)

j ‖2 ≤ 1 for all (k, j) ∈ [K] × [p]. Further assume that the three following
conditions hold:

(Ā) ∀j ∈ [p],
∑
`/∈K∗j

τ` < 1 +
∑
k∈K∗j

τk,

(C̄.i.1) c̄1 := max
j∈[p]

max
k∈[K]

∑
k∈[K]

τk‖(X
(k)T

T ∗k
X

(k)
T ∗k

)−1X
(k)T

T ∗k
X

(k)
j ‖1 < 1,

(C̄.ii) c̄2 := max
k∈[K]

max
j /∈T ∗k

‖(X(k)T

T ∗k
X

(k)
T ∗k

)−1X
(k)T

T ∗k
X

(k)
j ‖1 < 1.
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Now, set γ̄ = (1− c̄1) ∧ (1− c̄2), and

λ1 =
2

(1 ∧ τ0)γ̄

{
2σ2 log((K + 1)p)

n

}1/2

, βmin = λ1

(
τ0|T`∗ |1/2

Cmin
+ 4σC

−1/2
min

)
.

Then our proposal run with parameters λ1 and λ2,k = τkλ1 recovers S`∗ = ∅ and T`∗ = {(k, j) :
β∗k,j 6= 0}with probability at least 1−4 exp(−c1nλ

2
1), for some c1 > 0, as long as min(k,j)∈T ∗ |β∗k,j | >

βmin(n/nk)
1/2.

Condition (C̄.ii) is exactly the union of the irrepresentability conditions for each matrix X(k),
k ∈ [K], while conditions (C̄.i.1) and Ā both simply require that τ0 is small enough. For τ0

small enough, our proposal then mimics the strategy consisting in performing K lasso on the data
(X(k), y(k)), k = 1, . . . ,K, independently, with a common λ1 value for each lasso. It is optimal,
up to log-terms, when S`∗ = ∅.

5.2 Additional empirical results

5.2.1 UNDER THE DESIGNS CONSIDERED IN THE MAIN TEXT

Figure 3 presents additional results regarding the recovery of the set S∗1,P0
= {j ∈ P0 : β∗1,j 6= 0}

for the basic approach run with reference strata ` = (1, . . . , 1) and the recovery of the set S∗P0
=

{j ∈ P0 : β∗`∗j ,j
6= 0} for the other approaches. Overall, our proposal and the optimal version of

the basic approach perform similarly according to this criterion too. In the constant δ∗k,j case, all
methods perform similarly, and their performance does not depend on either p or dH . In the random
δ∗k,j case, the performance of each method decreases as p and/or dH increases. This discrepancy
with the results obtained in the constant case illustrates that it is harder for the optimal version of
the basic approach, our proposal and the clique-based strategy to determine whether the overall
effect β∗`∗j ,j of any covariate j is null when the collection of values (β∗1,j , . . . , β

∗
K,j) varies around

zero; keep in mind that in the random case, we have either β∗k,j = 1 or β∗k,j = 1 ± δ∗k,j with
δ∗k,j ∼ U[K1/2/2,2K1/2] so that β∗k,j can be negative. Interestingly, it is harder for the basic approach
to determine whether β∗1,j is null in this situation too. In addition, the basic approach is generally
outperformed by the other approaches in this random δ∗k,j case. The clique-based strategy performs
well for dH ≥ 6, especially when nk/p is not too small. But it is outperformed by our proposal,
and the optimal version of the basic approach, for dH = 3 and p = 500.

5.2.2 UNDER AN ALTERNATIVE SCENARIO

Here, we present additional empirical results obtained under a scenario which should favor the
clique-based strategy. We still consider the case where K = 20 and P0 ⊂ [p], with |P0| = 20 but,
for each j ∈ [P0], we set β1,j = · · · = β5,j = −a, β6,j = · · · = β10,j = 0, β11,j = · · · = β15,j = a
and β16,j = · · · = β20,j = 2a, for some a > 0. In other words, for each j ∈ [P0], the effects of
the jth covariate across the 20 strata are made of 4 groups of distinct values, which should favor
the clique-based strategy. Two values of a were considered, a = K1/2 and a = K1/2/3. Because
results were very similar, only those obtained for a = K1/2/3 are presented here. Figure 4 presents
the predictive performance of each approach. We especially observe that our proposal performs
nearly as well as the clique-based strategy in general, and outperforms it for p = 500. It also
slightly outperforms the two versions of the basic approach.
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Figure 3: Accuracy regarding the recovery the set S∗1,P0
= {j ∈ P0 : β∗1,j 6= 0} for the basic

approach and of the set S∗P0
= {j ∈ P0 : β∗`∗j ,j

6= 0} for the three other approaches.
(Left): Constant δ∗k,j case. (Right): Random δ∗k,j case. Results correspond to averages
over 50 replicates in each configuration. Solid line: our proposal. Dotted line: optimal
version of the basic approach. Dash-dot line: basic approach. Dashed line: clique-based
approach.

Figure 5 presents the estimates returned by each approach for one particular simulation in the
configuration nk = 100 and p = 100. It can especially be seen that the clique-based strategy does
not fuse coefficients sensibly better than the other approaches.
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Figure 4: Prediction error (the lower, the better). Results correspond to averages over 50 replicates
in each configuration. Solid line: our proposal. Dotted line: basic approach with ` =
(20, . . . , 20). Dash-dot line: basic approach with ` = (1, . . . , 1). Dashed line: clique-
based approach.
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Figure 5: Estimation of the K = 20 parameter vectors in one particular simulation with nk = 100
and p = 100. The first column presents the true values. Each of the four remaining
columns presents the estimates obtained according to one of the four considered ap-
proaches: our proposal, the clique-based approach and the basic approach with the refer-
ence stratum set to either 1 or 20 for every covariate.
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