Artificial Regulatory Networks Evolution - Archive ouverte HAL
Conference Papers Year : 2007

Artificial Regulatory Networks Evolution

Abstract

Genetic network inference is one of the main challenges for computer scientists in cellular biology. We propose to use in silico experimental evolution to guide the development of inference algorithm by (i) developing general knowledge about genetic networks structure (and use this knowledge to develop inference heuristics), and (ii) generate large realistic benchmarks to support validation of inference algorithms. For this purpose, we develop the RAevol model which aims at simulating the evolution of regulatory networks.
Fichier principal
Vignette du fichier
Liris-2999.pdf (113.11 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01502737 , version 1 (07-04-2017)

Identifiers

  • HAL Id : hal-01502737 , version 1

Cite

Yolanda Sanchez-Dehesa, Loïc Cerf, Jose Maria Pena, Jean-François Boulicaut, Guillaume Beslon. Artificial Regulatory Networks Evolution. Proc 1st Int Workshop on Machine Learning for Systems Biology MLSB 07, Sep 2007, Evry, France. pp.47-52. ⟨hal-01502737⟩
553 View
95 Download

Share

More