Estimating the division rate and kernel in the fragmentation equation - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré C, Analyse non linéaire Année : 2018

Estimating the division rate and kernel in the fragmentation equation

Résumé

We consider the fragmentation equation $\dfrac{\partial}{\partial t}f (t, x) = −B(x)f (t, x) + \int_{ y=x}^{ y=\infty} k(y, x)B(y)f (t, y)dy,$ and address the question of estimating the fragmentation parameters-i.e. the division rate $B(x)$ and the fragmentation kernel $k(y, x)$-from measurements of the size distribution $f (t, ·)$ at various times. This is a natural question for any application where the sizes of the particles are measured experimentally whereas the fragmentation rates are unknown, see for instance (Xue, Radford, Biophys. Journal, 2013) for amyloid fibril breakage. Under the assumption of a polynomial division rate $B(x) = \alpha x^{\gamma}$ and a self-similar fragmentation kernel $k(y, x) = \frac{1}{y} k_0 (x/ y)$, we use the asymptotic behaviour proved in (Escobedo, Mischler, Rodriguez-Ricard, Ann. IHP, 2004) to obtain uniqueness of the triplet $(\alpha, \gamma, k _0)$ and a representation formula for $k_0$. To invert this formula, one of the delicate points is to prove that the Mellin transform of the asymptotic profile never vanishes, what we do through the use of the Cauchy integral.
Fichier principal
Vignette du fichier
DET17_rev_hal.pdf (464.93 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01501811 , version 1 (04-04-2017)
hal-01501811 , version 2 (24-04-2018)

Identifiants

Citer

Marie Doumic, Miguel Escobedo, Magali Tournus. Estimating the division rate and kernel in the fragmentation equation. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2018, 35 (7), pp.1847-1884. ⟨10.1016/j.anihpc.2018.03.004⟩. ⟨hal-01501811v2⟩
868 Consultations
426 Téléchargements

Altmetric

Partager

More