Galerkin approximations of nonlinear optimal control problems in Hilbert spaces - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Differential Equations Année : 2017

Galerkin approximations of nonlinear optimal control problems in Hilbert spaces

Résumé

Nonlinear optimal control problems in Hilbert spaces are considered for which we derive approximation theorems for Galerkin approximations. Approximation theorems are available in the literature. The originality of our approach relies on the identification of a set of natural assumptions that allows us to deal with a broad class of nonlinear evolution equations and cost functionals for which we derive convergence of the value functions associated with the optimal control problem of the Galerkin approximations. This convergence result holds for a broad class of nonlinear control strategies as well. In particular, we show that the framework applies to the optimal control of semilinear heat equations posed on a general compact manifold without boundary. The framework is then shown to apply to geoengineering and mitigation of greenhouse gas emissions formulated for the first time in terms of optimal control of energy balance climate models posed on the sphere $\mathbb{S}^2$.
Fichier principal
Vignette du fichier
Chekroun_Kroener_Liu.pdf (325.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01501178 , version 1 (03-04-2017)

Identifiants

  • HAL Id : hal-01501178 , version 1

Citer

Mickaël D. Chekroun, Axel Kröner, Honghu Liu. Galerkin approximations of nonlinear optimal control problems in Hilbert spaces . Electronic Journal of Differential Equations, 2017, 2017 (189), pp.1-40. ⟨hal-01501178⟩
453 Consultations
126 Téléchargements

Partager

More