EQUIVALENCE OF PALM MEASURES FOR DETERMINANTAL POINT PROCESSES GOVERNED BY BERGMAN KERNELS - Archive ouverte HAL
Article Dans Une Revue Probability Theory and Related Fields Année : 2018

EQUIVALENCE OF PALM MEASURES FOR DETERMINANTAL POINT PROCESSES GOVERNED BY BERGMAN KERNELS

Résumé

For a determinantal point process induced by the reproducing kernel of the weighted Bergman space $A^2(U, \omega)$ over a domain $U \subset \mathbb{C}^d$, we establish the mutual absolute continuity of reduced Palm measures of any order provided that the domain $U$ contains a non-constant bounded holomorphic function. The result holds in all dimensions. The argument uses the $H^\infty(U)$-module structure of $A^2(U, \omega)$. A corollary is the quasi-invariance of our determinantal point process under the natural action of the group of compactly supported diffeomorphisms of $U$.
Fichier principal
Vignette du fichier
1703.08978.pdf (395.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01498869 , version 1 (30-03-2017)

Identifiants

Citer

Alexander I. Bufetov, Shilei Fan, Yanqi Qiu. EQUIVALENCE OF PALM MEASURES FOR DETERMINANTAL POINT PROCESSES GOVERNED BY BERGMAN KERNELS. Probability Theory and Related Fields, 2018, 172 (1-2), pp.31-69. ⟨10.1007/s00440-017-0803-z⟩. ⟨hal-01498869⟩
217 Consultations
150 Téléchargements

Altmetric

Partager

More