A full description of polytopes related to the index of the lowest nonzero row of an assignment matrix - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

A full description of polytopes related to the index of the lowest nonzero row of an assignment matrix

Résumé

Consider a {0, 1} assignment matrix where each column contains exactly one coefficient equal to 1 and let h be the index of the lowest row that is not identically equal to the zero row. We give a full description of the convex hull of all feasible assignments appended with the extra parameter h. This poly-tope and some of its variants naturally appear in the context of several combi-natorial optimization problems including frequency assignment, job scheduling, graph orientation, maximum clique, etc. We also show that the underlying separation problems are solvable in polynomial time and thus optimization over those polytopes can be done in polynomial time.
Fichier principal
Vignette du fichier
polyhedral_study-v4.pdf (165.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01497880 , version 1 (29-03-2017)

Identifiants

Citer

Walid Ben-Ameur, Antoine Glorieux, José Neto. A full description of polytopes related to the index of the lowest nonzero row of an assignment matrix. ISCO 2016 : 4th International Symposium on Combinatorial Optimization, May 2016, Vietri Sul Mare, Italy. pp.13-25, ⟨10.1007/978-3-319-45587-7_2⟩. ⟨hal-01497880⟩
358 Consultations
92 Téléchargements

Altmetric

Partager

More