Effective Berry-Esseen and concentration bounds for Markov chains with a spectral gap - Archive ouverte HAL
Article Dans Une Revue The Annals of Applied Probability Année : 2019

Effective Berry-Esseen and concentration bounds for Markov chains with a spectral gap

Résumé

Applying quantitative perturbation theory for linear operators, we prove nonasymptotic bounds for Markov chains whose transition kernel has a spectral gap in an arbitrary Banach algebra of functions X . The main results are concentration inequalities and Berry–Esseen bounds, obtained assuming neither reversibility nor “warm start” hypothesis: the law of the first term of the chain can be arbitrary. The spectral gap hypothesis is basically a uniform X-ergodicity hypothesis, and when X consist in regular functions this is weaker than uniform ergodicity. We show on a few examples how the flexibility in the choice of function space can be used. The constants are completely explicit and reasonable enough to make the results usable in practice, notably in MCMC methods.
Fichier principal
Vignette du fichier
2019-EffectiveMarkov.pdf (272.23 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01497377 , version 1 (28-03-2017)
hal-01497377 , version 2 (30-11-2017)
hal-01497377 , version 3 (29-10-2018)
hal-01497377 , version 4 (02-03-2019)

Identifiants

Citer

Benoît Kloeckner. Effective Berry-Esseen and concentration bounds for Markov chains with a spectral gap. The Annals of Applied Probability, 2019, 29 (3), pp.1778-1807. ⟨10.1214/18-aap1438⟩. ⟨hal-01497377v4⟩
172 Consultations
455 Téléchargements

Altmetric

Partager

More