From positive and intuitionistic bounded arithmetic to monotone proof complexity - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

From positive and intuitionistic bounded arithmetic to monotone proof complexity

Anupam Das
  • Fonction : Auteur
  • PersonId : 973451

Résumé

We study versions of second-order bounded arithmetic where induction and comprehension formulae are positive or where the underlying logic is intuitionistic, examining their relationships to monotone and deep inference proof systems for propositional logic. In the positive setting a restriction of a Paris-Wilkie (PW) style translation yields quasipolynomial-size monotone propositional proofs from Π 0 1 arithmetic theorems, as expected. We further show that, when only polynomial induction is used, quasipolynomial-size normal deep inference proofs may be obtained, via a graph-rewriting normalisation procedure from earlier work. For the intuitionistic setting we calibrate the PW translation with the Brouwer-Heyting-Kolmogorov interpretation of intuition-istic implication to recover a transformation to monotone proofs. By restricting type level we are able to identify an intuitionistic theory, I1U 1 2 , for which the transformation yields quasipolynomial-size monotone proofs. Conversely, we show that I1U 1 2 is powerful enough to prove the soundness of monotone proofs, thereby establishing a full correspondence.
Fichier principal
Vignette du fichier
pos-int-bdarith-mon-pc.pdf (405.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01494106 , version 1 (22-03-2017)

Identifiants

Citer

Anupam Das. From positive and intuitionistic bounded arithmetic to monotone proof complexity. 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS'16), Jul 2016, New York, United States. pp.126-135, ⟨10.1145/2933575.2934570⟩. ⟨hal-01494106⟩
225 Consultations
91 Téléchargements

Altmetric

Partager

More