Online deconvolution for pushbroom hyperspectral imaging systems - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Online deconvolution for pushbroom hyperspectral imaging systems

Yingying Song
Jie Chen
  • Fonction : Auteur
  • PersonId : 1004504
Cédric Richard
David Brie

Résumé

This paper introduces a framework based on the LMS algorithm for sequential deconvolution of hyperspectral images acquired by industrial pushbroom imaging systems. Considering a sequential model of image blurring phenomenon, we derive a sliding-block zero-attracting LMS algorithm with spectral regularization. The role of each hyper-parameter is discussed. The performance of the algorithm is evaluated using real hyperspectral data.
Fichier principal
Vignette du fichier
camsap_LMSdeconv.pdf (169.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01493901 , version 1 (22-03-2017)
hal-01493901 , version 2 (05-02-2018)

Identifiants

  • HAL Id : hal-01493901 , version 2

Citer

Yingying Song, El-Hadi Djermoune, Jie Chen, Cédric Richard, David Brie. Online deconvolution for pushbroom hyperspectral imaging systems. 7th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2017, IEEE, Dec 2017, Curaçao, Netherlands Antilles. ⟨hal-01493901v2⟩
441 Consultations
645 Téléchargements

Partager

More