A Fokker-Planck model of the Boltzmann equation with correct Prandtl number for polyatomic gases - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Physics Année : 2017

A Fokker-Planck model of the Boltzmann equation with correct Prandtl number for polyatomic gases

Résumé

We propose an extension of the Fokker-Planck model of the Boltzmann equation to get a correct Prandtl number in the Compressible Navier-Stokes asymptotics for polyatomic gases. This is obtained by replacing the diffusion coefficient (which is the equilibrium temperature) by a non diagonal temperature tensor, like the Ellipsoidal-Statistical model is obtained from the Bathnagar-Gross-Krook model of the Boltzmann equation, and by adding a diffusion term for the internal energy. Our model is proved to satisfy the properties of conservation and a H-theorem. A Chapman-Enskog analysis shows how to compute the transport coefficients of our model. Some numerical tests are performed to illustrate that a correct Prandtl number can be obtained.
Fichier principal
Vignette du fichier
ESFP2.pdf (672.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01493376 , version 1 (21-03-2017)

Identifiants

  • HAL Id : hal-01493376 , version 1

Citer

Julien Mathiaud, Luc Mieussens. A Fokker-Planck model of the Boltzmann equation with correct Prandtl number for polyatomic gases. Journal of Statistical Physics, 2017, 168 (5), pp.1031-1055. ⟨hal-01493376⟩
330 Consultations
734 Téléchargements

Partager

More