Generalisation Error Bounds for Classifiers Trained with Interdependent Data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2005

Generalisation Error Bounds for Classifiers Trained with Interdependent Data

Résumé

In this paper we propose a general framework to study the generalization properties of binary classifiers trained with data which may be dependent, but are deterministically generated upon a sample of independent examples. It provides generalization bounds for binary classification and some cases of ranking problems, and clarifies the relationship between these learning tasks.
Fichier non déposé

Dates et versions

hal-01490502 , version 1 (15-03-2017)

Identifiants

  • HAL Id : hal-01490502 , version 1

Citer

Nicolas Usunier, Massih-Reza Amini, Patrick Gallinari. Generalisation Error Bounds for Classifiers Trained with Interdependent Data. NIPS 2005 - 18th International Conference on Neural Information Processing Systems, Dec 2005, Vancouver, Canada. pp.1369-1376. ⟨hal-01490502⟩
114 Consultations
0 Téléchargements

Partager

More