Uncertainty quantification using cloud computing for Monte Carlo parallelization - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Uncertainty quantification using cloud computing for Monte Carlo parallelization

Americo Cunha Jr
Rubens Sampaio
  • Fonction : Auteur
Rafael Nasser
  • Fonction : Auteur
Hélio Lopes
  • Fonction : Auteur
Karin Breitman
  • Fonction : Auteur

Résumé

Due to its simplicity and good statistical results, the Monte Carlo (MC) method is the most commonly technique used for uncertainty quantification. However, its computational cost is significant, and, in many cases, prohibitive. Fortunately, the MC algorithm can be can be parallelized, which may allows its use in complex simulations. In this sprit, this work presents a methodology for the parallelization of MC method in a cloud computing setting. The methodology is illustrated on a stochastic problem of structural dynamics, and the simulation results show good accuracy for low-order statistics. Also, this methodology shows a good performance in terms of processing-time and storage space usage.
Fichier principal
Vignette du fichier
conf_cobem13.pdf (1.15 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01487357 , version 1 (11-03-2017)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-01487357 , version 1

Citer

Americo Cunha Jr, Rubens Sampaio, Rafael Nasser, Hélio Lopes, Karin Breitman. Uncertainty quantification using cloud computing for Monte Carlo parallelization. 22nd International Congress of Mechanical Engineering (COBEM 2013), Nov 2013, Ribeirão Petro, Brazil. ⟨hal-01487357⟩
112 Consultations
62 Téléchargements

Partager

More