Ergodic measures on spaces of infinite matrices over non-Archimedean locally compact fields
Résumé
Let $F$ be a non-discrete non-Archimedean locally compact field and $\mathcal{O}_F$ the ring of integers in $F$. The main results of this paper are Theorem 1.2 that classifies ergodic probability measures on the space $\mathrm{Mat}(\mathbb{N}, F)$ of infinite matrices with enties in $F$ with respect to the natural action of the group $\mathrm{GL}(\infty,\mathcal{O}_F) \times \mathrm{GL}(\infty,\mathcal{O}_F)$ and Theorem 1.6 that, for non-dyadic $F$, classifies ergodic probability measures on the space $\mathrm{Sym}(\mathbb{N}, F)$ of infinite symmetric matrices with respect to the natural action of the group $\mathrm{GL}(\infty,\mathcal{O}_F)$.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...