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ERGODIC MEASURES ON SPACES OF INFINITE
MATRICES OVER NON-ARCHIMEDEAN LOCALLY

COMPACT FIELDS

ALEXANDER I. BUFETOV AND YANQI QIU

Abstract. Let F be a non-discrete non-Archimedean locally com-
pact field and OF the ring of integers in F . The main results of this
paper are Theorem 1.2 that classifies ergodic probability measures
on the space Mat(N, F ) of infinite matrices with enties in F with
respect to the natural action of the group GL(∞,OF )×GL(∞,OF )
and Theorem 1.6 that, for non-dyadic F , classifies ergodic probabil-
ity measures on the space Sym(N, F ) of infinite symmetric matrices
with respect to the natural action of the group GL(∞,OF ).
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1. Introduction

Given a group action on a topological space, it is natural to try to
describe the corresponding space of ergodic invariant probability mea-
sures. For some very classical actions, such as, for example, that of the
shift on the space of infinite binary sequences, the space of ergodic mea-
sures is huge and does not seem to admit a reasonable description. On
the other hand, for a number of natural actions of infinite-dimensional
groups, a complete classification is possible. For example, De Finetti’s
Theorem (1937) claims that for the action of the infinite symmetric
group on the space of infinite binary sequences, all ergodic probability
measures are Bernoulli, and Schoenberg’s Theorem (1951) claims that
for the action of the infinite orthogonal group on the space of infinite
R-valued sequences, all ergodic probability measures are Gaussian. In
both these examples, the space of ergodic probability measures is one-
dimensional. Pickrell [13, 14, 15] and, by a different method, Olshanski
and Vershik [10], classified all ergodic unitarily invariant measures on
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the space of infinite Hermitian matrices. In this case, an ergodic mea-
sure is determined by infinitely many parameters.

In this paper, we study classification of ergodic measures for actions
related to the following inductive limit group

GL(∞,OF ) := lim
−→

GL(n,OF ),(1.1)

where OF is the ring of integers in a non-discrete locally compact non-
Archimedean field F and GL(n,OF ) is the compact group of invertible
n× n matrices over OF . Denote by Mat(N, F ) (resp. Sym(N, F )) the
space of infinite matrices (resp. infinite symmetric matrices) over F .
Our main results are:

(i) the classification of the ergodic probability measures for the group
action of GL(∞,OF )×GL(∞,OF ) on Mat(N, F ) defined by

((g1, g2),M) 7→ g1Mg−1
2 , g1, g2 ∈ GL(∞,OF ),M ∈ Mat(N, F );

(ii) the classification of the ergodic probability measures for the group
action of GL(∞,OF ) on Sym(N, F ) defined by

(g,M) 7→ gMgt, g ∈ GL(∞,OF ), S ∈ Sym(N, F ),

where and gt is the transposition of g.
We proceed to the precise formulation. Let F be a non-discrete

locally compact non-Archimedean field (for example, the field of p-
adic numbers). Let | · | be the absolute value on F . The ring OF of
integers in F is given by {x ∈ F : |x| ≤ 1}. The unique maximal
and principal ideal of OF is given by {x ∈ F : |x| < 1}. Throughout
the paper, we fix any generator ̟ of {x ∈ F : |x| < 1}, that is,
{x ∈ F : |x| < 1} = ̟OF . The quotient OF/̟OF is a finite field with
q elements.

Define the inductively compact group GL(∞,OF ) by (1.1). Set

Mat(N, F ) := {X = (Xij)i,j∈N|Xij ∈ F}.

Let Mat(∞, F ) denote the subspace of Mat(N, F ) consisting of matrices
whose all but a finite number of coefficients are zero. Define also

Sym(N, F ) := {X ∈ Mat(N, F )|Xij = Xji, ∀i, j ∈ N},

and let Sym(∞, F ) := Sym(N, F ) ∩Mat(∞, F ).

1.1. Classification of ergodic measures on Mat(N, F ). Let ∆ be
the set of non-increasing sequences in Z ∪ {−∞}, that is,

∆ :=
{
k = (kj)

∞
j=1

∣∣∣kj ∈ Z ∪ {−∞}; k1 ≥ k2 ≥ · · ·
}
.(1.2)

By the inclusion ∆ ⊂ (Z ∪ {−∞})N, we equip ∆ with the induced
topology of the Tychonoff’s product topology on (Z ∪ {−∞})N.
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To each sequence k ∈ ∆, we now assign an ergodic GL(∞,OF ) ×
GL(∞,OF )-invariant probability measure on Mat(N, F ). Let

X
(n)
i , Y

(n)
i , Zij, i, j, n = 1, 2, · · ·

be independent random variables, each sampled with respect to the
normalized Haar measure on the compact additive group OF . In what
follows, we use the convention ̟∞ = 0.

Definition 1.1. Given an element k ∈ ∆, let

µ
k

:= L(M
k

)

be the probability distribution of the infinite random matrix M
k

defined
as follows. Denote k := lim

n→∞
kn ∈ Z ∪ {−∞} and set

M
k

:=
[ ∑

n: kn>k

̟−knX
(n)
i Y

(n)
j +̟−kZij

]
i,j∈N

.

Let Perg(Mat(N, F )) be the space of ergodic GL(∞,OF )×GL(∞,OF )-
invariant probability measures on Mat(N, F ), endowed with the in-
duced weak topology. The classification of Perg(Mat(N, F )) is given by
the following

Theorem 1.2. The map k 7→ µ
k

is a homeomorphism between ∆ and
Perg(Mat(N, F )).

Remark 1.3. By Theorem 1.2, the space Perg(Mat(N, F )) is weakly
closed in the space of all Borel measures on Mat(N, F ) and is σ-compact;
moreover, any measure µ

k

∈ Perg(Mat(N, F )) is compactly supported.

Let us explain Theorem 1.2 in more detail. We have the following
elementary ergodic measures:

• (Haar type measures) For any k ∈ Z, the normalized Haar mea-
sure on Mat(N, ̟−kOF ) is GL(∞,OF )×GL(∞,OF )-ergodic.

• (Non-symmetric Wishart type measures) Let X1, Y1, X2, Y2, · · ·
be independent and uniformly distributed on OF . For any k ∈
Z, the probability distribution of the random matrix:

[̟−kXiYj]i,j∈N

is GL(∞,OF )×GL(∞,OF )-ergodic.

Theorem 1.2 implies that any ergodic GL(∞,OF )×GL(∞,OF )-invariant
probability measure on Mat(N, F ) can be obtained as a possibly infinite
convolution of the above two types of elementary ones.

1.2. Classification of ergodic measures on Sym(N, F ). In what
follows, when dealing with the ergodic measures on Sym(N, F ), we
always assume that the field F is non-dyadic, that is, the cardinality
of the field of residue class OF/̟OF is not a power of 2.
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The group of units of OF is given by O×
F := {x ∈ F : |x| = 1}.

Denote by (O×
F )

2 the subgroup of O×
F defined by

(O×
F )

2 := {x ∈ O×
F : there exists a ∈ F such that x = a2}.

If F is non-dyadic, then the quotient O×
F /(O×

F )
2 has two elements.

Throughout the paper, we fix a non-square unit ε ∈ O×
F \ (O×

F )
2.

We now explicitly describe the parametrization of ergodic GL(∞,OF )-
invariant probability measures on Sym(N, F ).

Recall the definition (1.2) of the set ∆ of non-increasing sequences
in Z ∪ {−∞}. A sequence (kj)j∈N ∈ ∆ is called finite if kj = −∞ for
all sufficiently large j. In this case, either k1 = −∞, then we identity
the sequence with an empty sequence, or j0 := max{j|kj ∈ Z} ∈ N,
then we identify (kj)j∈N with (kj)

j0
j=1 and j0 is called the length of the

sequence. Conversely, for any finite non-increasing sequence (kj)
n
j=1 in

Z, we identify it with the element in ∆ by adding infinitely many −∞
at the end of (kj)

n
j=1.

For any k ∈ Z, let Z>k denote the set of integers strictly larger than
k. We introduce the following four subsets of ∆:

• ∆[k], the set of non-increasing sequences of finite length in Z>k;
• ∆♯[k], the set of strictly decreasing sequences in Z>k (which are
automatically of finite length).

• ∆[−∞], the set of non-increasing sequences in Z of finite length
or of infinite length tending to −∞;

• ∆♯[−∞], the set of strictly decreasing sequences of finite or in-
finite length in Z.

Note that for any k ∈ Z ∪ {−∞}, the following relations hold:

∆♯[k] ⊂ ∆[k], ∆♯[k] ⊂ ∆♯[−∞] and ∆♯[k] ⊂ ∆[−∞].

We introduce the parameter space

Ω :=
⊔

k∈Z∪{−∞}

{k} ×∆[k]×∆♯[k],(1.3)

where {k} is the singleton with a single element k. The space Ω is
equipped with the topology induced by the inclusion:

Ω ⊂ (Z ∪ {−∞})× (Z ∪ {−∞})N × (Z ∪ {−∞})N.
To each element h ∈ Ω, we assign an ergodic GL(∞,OF )-invariant

probability measure on Sym(N, F ) as follows. Let

X
(n)
i , Y

(n)
i , Hij, i ≤ j, n = 1, 2, · · ·

be independent random variables uniformly distributed on OF . In par-
ticular, define

H = [Hij]i,j∈N(1.4)

by setting Hij = Hji if i > j, then H is an infinite symmetric random
matrix sampled uniformly from Sym(N,OF ).
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Definition 1.4. For any h ∈ Ω given by

h = (k;k,k′), with k ∈ Z ∪ {−∞}, k ∈ ∆[k], k′ ∈ ∆♯[k],

we define

ν
h

:= L(S
h

),

as the probability distribution of the infinite symmetric random matrix
S
h

defined as follows. First let

W
k

:=
[ ∞∑

n=1

̟−knX
(n)
i X

(n)
j

]
i,j∈N

, W
k

′ :=
[ ∞∑

n=1

̟−k′nY
(n)
i Y

(n)
j

]
i,j∈N

,

we set

S
h

:= W
k

+ εW
k

′ +̟−kH.

Remark 1.5. The strictly decreasing assumption on the sequences k′ ∈
∆♯[k] is imposed for the uniqueness of parametrization. The reason is
the following:

L
([ 2∑

n=1

X
(n)
i X

(n)
j

]
i,j∈N

)
= L

(
ε
[ 2∑

n=1

X
(n)
i X

(n)
j

]
i,j∈N

)
.(1.5)

For the detail, see Remark 4.7 and the proof of Proposition 5.3 below.

Let Perg(Sym(N, F )) be the space of ergodic GL(∞,OF )-invariant
probability measures on Sym(N, F ), endowed with the induced weak
topology. The classification of Perg(Sym(N, F )) is given by the follow-
ing

Theorem 1.6. Assume that F is non-dyadic. Then the map h 7→ ν
h

is a homeomorphism between Ω and Perg(Sym(N, F )).

Remark 1.7. By Theorem 1.6, the space Perg(Sym(N, F )) is weakly
closed in the space of all Borel measures on Sym(N, F ) and is σ-
compact. Moreover, any measure ν

h

∈ Perg(Sym(N, F )) is compactly
supported.

Theorem 1.6 can be explained as follows. We have the following
elementary ergodic measures.

• (Haar type measures) For any k ∈ Z, the normalized Haar
measure on Sym(N, ̟−kOF ) is GL(∞,OF )-ergodic.

• (Symmetric Wishart type measures) Let X1, X2, · · · be inde-
pendent copies of F -valued random variables, all of which are
uniformly distributed on OF . For any k ∈ Z, the distributions
of the infinite rank one random matrices:

[̟−kXiXj ]i,j∈N and [ε̟−kXiXj]i,j∈N

are GL(∞,OF )-ergodic.
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Theorem 1.6 implies that any ergodic GL(∞,OF )-invariant probability
measure on Sym(N, F ) can be obtained as a possibly infinite convolu-
tion of the above two types of elementary ones.

1.3. Characteristic functions of ergodic measures. Let χ ∈ F̂ be
a fixed character of F such that

χ|OF
≡ 1 and χ is not constant on ̟−1OF .(1.6)

Given a Borel probability measure µ on Mat(N, F ), its characteristic
function, or Fourier transform, µ̂ is defined on Mat(∞, F ) by the for-
mula

µ̂(A) :=

∫

Mat(N,F )

χ(tr(AM))µ(dM), A ∈ Mat(∞, F ).

Similarly, given a Borel probability measure ν on Sym(N, F ), its char-
acteristic function ν̂ is defined on Sym(∞, F ) by the formula

ν̂(A) :=

∫

Sym(N,F )

χ(tr(AS))ν(dS), A ∈ Sym(∞, F ).

Let Mat(n, F ) be the space of n×n matrices with entries in F . Every
A ∈ Mat(n, F ) can be written (see Lemma 2.4 below) in the form

A = a · diag(̟−k1, · · · , ̟−kn) · b, a, b ∈ GL(n,OF ), ki ∈ Z ∪ {−∞}.
These numbers k1, k2, · · · , kn, taken with multiplicities, are uniquely
determined by A and are called the singular numbers of A. The collec-
tion of the singular numbers of the matrix A is denoted Sing(A).

After the computation of characteristic functions for the probability
measures in the list of measures defined in Definition 1.1 (see Propo-
sition 4.1 below), Theorem 1.2 can be reformulated in the following
form.

Theorem 1.8. The characteristic functions of ergodic GL(∞,OF ) ×
GL(∞,OF )-invariant probability measures on Mat(N, F ) are exactly of
the form

ϕ(A) =
∏

ℓ∈Sing(A)

exp
(
− log q ·

∞∑

j=1

(kj + ℓ)1{kj+ℓ≥1}

)
, A ∈ Mat(∞, F ),

where k = (kj)j∈N ∈ ∆ is the parameter sequence.

For formulating a similar statement in symmetric case, we need to
introduce a function θ : F → C by

θ(x) :=

∫

OF

χ(z2 · x)dz.(1.7)

Properties of the function θ are summarized in Proposition 4.5 below.
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Let Sym(n, F ) be the space of n×n symmetric matrices with entries
in F . Note that if the field F is non-dyadic, then any A ∈ Sym(n, F )
can be written (see Lemma 2.7 below) in the form

A = g · diag(x1, · · · , xn) · gt, g ∈ GL(n,OF ).

After the computation of characteristic functions for the probability
measures in the list of measures defined in Definition 1.4 (see Proposi-
tion 4.4), Theorem 1.6 can be reformulated in the following form.

Theorem 1.9. Assume that F is non-dyadic. Then the characteristic
functions of the ergodic GL(∞,OF )-invariant probability measures on
Sym(N, F ) are exactly given by

Φ(diag(x1, · · · , xm, 0, · · · )) =
m∏

i=1

[
1OF

(̟−kxi)

∞∏

j=1

θ(̟−kjxi)

∞∏

j=1

θ(ε̟−k′jxi)
]
,

where h = (k; (kj)j∈N, (k
′
j)j∈N) is a parameter in Ω introduced in (1.3).

1.4. Spherical representations. Our classification theorems, Theo-
rem 1.2 and Theorem 1.6, can equivalently be formulated as a classi-
fication of spherical representations of the infinite dimensional Cartan
motion groups

Mat(∞, F )⋊ (GL(∞,OF )×GL(∞,OF )) and Sym(∞, F )⋊GL(∞,OF )

respectively. We explain this in more detail for Sym(∞, F )⋊GL(∞,OF ).
Recall that Sym(n, F )⋊GL(n,OF ) is the semi-direct product of the

additive group Sym(n, F ) and the general linear group GL(n,OF ). El-
ements of Sym(n, F )⋊GL(n,OF ) are pairs (A, g), A ∈ Sym(n, F ), g ∈
GL(n,OF ) and the rule of multiplication is given by

(A, g) · (B, h) = (A+ gBgt, gh).

The group Sym(∞, F )⋊GL(∞,OF ) is defined in a similar way and is
of course the inductive limit of the sequence Sym(n, F ) ⋊ GL(n,OF ).
The groups Sym(∞, F ) and GL(∞,OF ) are canonically identified with
subgroups of Sym(∞, F )⋊GL(∞,OF ) by the following embeddings

A 7→ (A, 1) and g 7→ (0, g),

where A ∈ Sym(∞, F ) and g ∈ GL(∞,OF ).
A unitary representation ρ of Sym(∞, F )⋊GL(∞,OF ) in a Hilbert

space H(ρ) is called spherical if it is irreducible and the subspace
H(ρ)GL(∞,OF ) of GL(∞,OF )-invariant vectors in H(ρ) is nontrivial; in
which case, by irreducibility, the subspace H(ρ)GL(∞,OF ) has dimension
one. A vector h ∈ H(ρ)GL(∞,OF ) of norm 1 is called a spherical vector
of ρ and the function

ϕρ(g) := (ρ(g)h, h), g ∈ GL(∞,OF )

is called the spherical function of ρ. The spherical function ϕρ is an
invariant of the spherical representation ρ and it uniquely determines ρ.
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As a bi-invariant function with respect to the subgroup GL(∞,OF ) ⊂
Sym(∞, F ) ⋊ GL(∞,OF ), the function ϕρ is uniquely determined by
its restriction ϕρ|Sym(∞,F ).

Given an ergodic GL(∞,OF )-invariant probability measure ν on
Sym(N, F ), one may define a spherical representation ρν in the Hilbert
space L2(Sym(N, F ), ν) as follows:

(ρ(g)ξ)(S) = ξ(g−1S), g ∈ GL(∞,OF ),

(ρ(A)ξ)(S) = χ(tr(AS))ξ(S), A ∈ Sym(∞, F ),

where ξ ∈ L2(Sym(N, F ), ν) and S ∈ Sym(N, F ). The spherical vector
can be chosen as the constant function ξ0(S) ≡ 1.

Proposition 1.10. The map ν 7→ ρν defines a bijection between the
set of ergodic GL(∞,OF )-invariant probability measures on Sym(N, F )
and the set of spherical representations of the group Sym(∞, F ) ⋊
GL(∞,OF ).

The proof of Proposition 1.10 is the same as that of Olshanski and
Vershik [10, Proposition 1.5].

1.5. An outline of the argument. Our argument relies on the Vershik-
Kerov ergodic method in the spirit of Olshanski and Vershik [10]. The
implementation of individual steps is, however, quite different. In the
case of measures on Mat(N, F ) and the case of measures on Sym(N, F ),
the main steps are

• Explicit construction of ergodic measures, see Definition 1.1 and
Definition 1.4.

• The asymptotic formulae for the analogues of Harish-Chandra–
Izykson-Zuber orbital integrals, see Theorem 7.1, Theorem 7.4
in the case of measures on Mat(N, F ) and Theorem 7.5, Theo-
rem 7.6 in the case of measures on Sym(N, F ).

• Proof of completeness of the lists of ergodic measures, see The-
orem 8.8 and Theorem 8.14 respectively.

We now explain our method in greater detail in the case of measures
on Sym(N, F ).

1) The Vershik-Kerov method: approximation of ergodic measures by
orbital measures. While we follow the general scheme of Vershik and
Kerov, a number of details are different.

Given x ∈ Sym(N, F ) and n ∈ N, let mGL(n,OF )(x) denote the unique
GL(n,OF )-invariant probability measure on Sym(N, F ) supported on
the orbit GL(n,OF ) · x ⊂ Sym(N, F ). Let ORB∞(Sym(N, F )) be
the class of probability measures ν on Sym(N, F ) verifying the condi-
tion: there exists a sequence of positive integers n1 < n2 < · · · and a
sequence (νnk

)k∈N of probability measures with νnk
being a GL(nk,OF )-

orbital measure supported on Sym(nk, F ) ⊂ Sym(N, F ), such that νnk

converges weakly to ν.
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As a variant of Vershik’s Theorem (see Theorem 6.3 below), we ob-
tain the following inclusion:

Perg(Sym(N, F )) ⊂ ORB∞(Sym(N, F )).

Note that, a priori, we do not know whether the inverse inclusion holds.

2) Main ingredients: Classification of ORB∞(Sym(N, F )).
i): Computation of orbital integrals.
To describe ORB∞(Sym(N, F )), we need to understand the asymp-

totic behaviour of the characteristic functions of orbital measures of
the compact groups GL(n,OF ). Recalling the assumption on the char-

acter χ ∈ F̂ in (1.6), we obtain an asymptotic formula for the following
orbital integral:

∫

GL(n,OF )

χ(tr(g · diag(x1, · · · , xn) · gt · diag(a1, · · · , ar, 0, · · · ))dg,
(1.8)

where dg is the normalized Haar measure of GL(n,OF ). The formula
we obtain for the integral (1.8) is uniformly asymptotically multiplica-
tive, that is, the orbital integral (1.8) has the same asymptotic be-
haviour, uniformly on the choices of x1, · · · , xn, as the following prod-
uct of much simpler orbital integrals:

r∏

j=1

∫

GL(n,OF )

χ(tr(g · diag(x1, · · · , xn) · gt · diag(aj , 0, 0, · · · ))dg.

See Theorem 7.6 for the details.
Explicit computation of the above orbital integral requires some

Fourier analysis on the field F and quite a few combinatorial argu-
ments in which we compute the cardinality of various sets of matrices
over the finite field Fq.

ii): Multiplicativity of characteristic functions for limits of orbital
measures.

An immediate consequence of the uniform asymptotic multiplicativ-
ity for the orbital integral (1.8) is that for any ν ∈ ORB∞(Sym(N, F )),
its characteristic function ν̂ possesses an exact multiplicativity prop-
erty, that is, for any r ∈ N and any x1, · · · , xr ∈ F ,

ν̂(diag(x1, · · · , xr, 0, 0, · · · )) =
r∏

j=1

ν̂(xje11),(1.9)

where e11 is the elementary matrix whose (1, 1)-coefficient is 1. This
multiplicativity result implies in particular that the classification of the
class ORB∞(Sym(N, F )) is reduced to the classification of the class
of functions on F defined by x 7→ ν̂(xe11).
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3) Ergodicity: Proof of the inclusion:

ORB∞(Sym(N, F )) ⊂ Perg(Sym(N, F )).

Our direct proof of ergodicity for all measures in ORB∞(Sym(N, F ))
uses an argument of Okounkov and Olshanski [9]: ergodicity for mea-
sures in ORB∞(Sym(N, F )) is derived from the De Finetti Theorem,
see Theorem 3.11 below for the details. This approach of proving er-
godicity can be also applied to different situations, such as that of
Olshanski and Vershik in [10].

4) Proof of the equality

Perg(Sym(N, F )) = {ν
h

: h ∈ Ω}.(1.10)

By comparing the characteristic functions ν̂
h

for all Ω and that of
measures in ORB∞(Sym(N, F )), we obtain the equality

ORB∞(Sym(N, F )) = {ν
h

: h ∈ Ω}.

Combining this equality with the results obtained in the previous steps,
we finally get the desired equality (1.10).

1.6. Organization of the paper. The exposition, which we tried to
make essentially self-contained, is organized as follows.

In §2, we recall the definition of ergodic measures and the necessary
definitions related to non-discrete locally compact non-Archimedean
fields, linear groups over them and Fourier transforms in this setting.

In §3, we prove that all the measures on Mat(N, F ) from the family
{µ

k

|k ∈ ∆} introduced in Definition (1.1) are GL(∞,OF )×GL(∞,OF )-
invariant and ergodic and that all the measures on Sym(N, F ) from
the family {ν

h

|h ∈ Ω} introduced in Definition (1.4) are GL(∞,OF )-
invariant and ergodic.

In §4, we give explicit formulae for characteristic functions of mea-
sures from the two families {µ

k

: k ∈ ∆} and {ν
h

: h ∈ Ω}.
In §5, we prove that the parametrization maps k → µ

k

from ∆ to
Perg(Mat(N, F )) and h 7→ ν

h

from Ω to Perg(Sym(N, F )) are injective.
In §6, we introduce orbital measures and recall the Vershik-Kerov

ergodic method for dealing with ergodic measures for inductively com-
pact groups.

In §7, we obtain the asymptotic formula for orbital integrals of the
type (1.8).

In §8, we complete the classifications by proving that the parametriza-
tion maps k→ µ

k

and h 7→ ν
h

are surjective.
In §9, we show that the parametrization maps k → µ

k

and h 7→ ν
h

are homeomorphisms between corresponding topological spaces.
Proofs of some routine technical lemmata are given in the appendix.
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2. Preliminaries

2.1. Ergodic measures. Let X be a Polish space, that is, it is homeo-
morphic to a complete metric space that has a countable dense subset.
Denote by P(X ) the set of Borel probability measures on X . Denote by
Cb(X ) the space of bounded continuous complex-valued functions on
X . Recall that a sequence (µn)n∈N in P(X ) is said to converge weakly
to µ ∈ P(X ) and is denoted by µn =⇒ µ if for any f ∈ Cb(X ), we have

lim
n→∞

∫

X

f(x)µn(dx) =

∫

X

f(x)µ(dx).

Given a group action of a group G on X , we denote by PG
inv(X ) the

set of G-invariant Borel probability measures on X . By definition, a
G-invariant Borel probability measure µ ∈ PG

inv(X ) is ergodic, if for any
G-invariant Borel subset A ⊂ X , either µ(A) = 0 or µ(X \A) = 0. The
totality of ergodic G-invariant probability measures on X is denoted
by PG

erg(X ). If the group action is clear from the context, we denote

PG
inv(X ) and PG

erg(X ) simply by Pinv(X ) and Perg(X ) respectively.

2.2. Fields and integers. Let F be a non-discrete locally compact
non-Archimedean field. The classification of local fields (see, e.g., Ra-
makrishnan and Valenza’s book [17, Theorem 4-12]) implies that F is
isomorphic to one of the following fields:

• a finite extension of the field Qp of p-adic numbers for some
prime p.

• the field of formal Laurent series over a finite field.

Let |·| be the absolute value on F and denote by d(·, ·) the ultrametric
on F defined by d(x, y) = |x− y|. The ring of integers in F is given by

OF := {x ∈ F : |x| ≤ 1}.
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The subset m := {x ∈ F : |x| < 1} is the unique maximal ideal of OF .
The ideal m is principal. Any generator of m is called a uniformizer
of F . Throughout the paper, we fix any uniformizer ̟ of F , that is,
m = ̟OF . The field OF/̟OF is finite with q = pf elements for a
prime number p and a positive integer f ∈ N. If q = 2f , then we say
that F is dyadic, otherwise, we say that F is non-dyadic.

We denote Fq := OF/̟OF . The quotient map is denoted by

π : OF → Fq = OF/̟OF .

Fix a complete set of representatives Cq ⊂ OF of cosets of ̟OF in OF

and assume that 0 ∈ Cq. The restriction of the quotient map π on the
finite set Cq is a bijection:

π : Cq bijection−−−−→ Fq.(2.11)

Any element of F is uniquely expanded as a convergent series in F :

x =

∞∑

n=v

an̟
n (v ∈ Z, an ∈ Cq, av 6= 0).(2.12)

If x ∈ F is given by the series (2.12), then we define the F -valuation of
x by ordF (x) := v. By convention, we set ordF (0) = ∞. The absolute
value and the F -valuation of any element x ∈ F are related by the
formula |x| = q−ordF (x).

2.3. Group actions. Let GL(n, F ) and GL(n,OF ) denote the groups
of invertible n× n matrices over F and OF respectively. GL(n,OF ) is
embedded naturally into GL(n+ 1,OF ) by

a ∈ GL(n,OF ) 7→
(
a 0
0 1

)
∈ GL(n+ 1,OF ).(2.13)

Define an inductive limit group

GL(∞,OF ) := lim
−→

GL(n,OF ).

Equivalently, GL(∞,OF ) is the group of infinite invertible matrices
g = (gij)i,j∈N over OF such that gij = δij if i+ j is large enough.

Let Mat(n, F ) and Mat(n,OF ) denote the spaces of all n×nmatrices
over F and OF respectively. Define

Mat(N, F ) := {X = (Xij)i,j∈N|Xij ∈ F}.
Let Mat(∞, F ) denote the subspace of Mat(N, F ) consists of matrices
whose all but a finite number of coefficients are zeros. Define also

Sym(n, F ) : = {X ∈ Mat(n, F )|Xij = Xji, ∀1 ≤ i, j ≤ n},
Sym(N, F ) : = {X ∈ Mat(N, F )|Xij = Xji, ∀i, j ∈ N}.

Set Sym(∞, F ) := Sym(N, F ) ∩Mat(∞, F ).
Two natural group actions under consideration in this paper are the

following:
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• The group action of GL(∞,OF ) × GL(∞,OF ) on Mat(N, F )
defined by:

((g1, g2),M) 7→ g1Mg−1
2 , g1, g2 ∈ GL(∞,OF ),M ∈ Mat(N, F ).

• The group action of GL(∞,OF ) on Sym(N, F ) defined by:

(g,M) 7→ gMgt, g ∈ GL(∞,OF ), S ∈ Sym(N, F ),

where gt is the transposition of g.

2.4. Conventions. Given a finite set B, we denote #B its cardinality.
Let (Σ,B, m) be a measured space and let f be a real or complex

valued integrable function defined on Σ . If A ⊂ Σ is measurable and
0 < m(A) <∞, then we denote

−
∫

A

f(x)dm(x) :=
1

m(A)

∫

A

f(x)dm(x).(2.14)

For any random variable Y , we denote its distribution by L(Y ).
Conventions concerning the empty set ∅: let (ri)i∈I be a family of

real numbers (or complex numbers for the last two formulae), we set

inf
i∈∅

ri = +∞, sup
i∈∅

ri = −∞,
∑

i∈∅

ri = 0,
∏

i∈∅

ri = 1.

The following conventions will also be used:

• As elements in F : ̟∞ = ̟+∞ = 0 ∈ F.
• As elements in R∪{+∞}: q∞ = q+∞ = +∞ and q−∞ = 0 ∈ R.

2.5. Haar measure on GL(n,OF ). For any n ∈ N, denote by dvoln
the Haar measure on F n normalized by the condition voln(On

F ) = 1.
If there is no confusion, we will use the simplified notation vol(·) for
voln(·).
Remark 2.1. The Haar measure voln on F n is preserved by any linear
map represented by a matrix from the group GL(n,OF ).

For any n, we fix a Haar measure vol(·) on Mat(n, F ) normalized
by vol(Mat(n,OF )) = 1. Upper to a multiplicative constant, the Haar
measure on the locally compact group GL(n, F ) is uniquely given (see,
e.g., Neretin [7]) by

| det(M)|−n · vol(dM).(2.15)

Let GL(n,Fq) be the group of invertible n× n matrices over Fq. Set

GL(n, Cq) := {t = (tij)1≤i,j≤n ∈ GL(n,OF ) : tij ∈ Cq}.
Proposition 2.2. A standard partition of GL(n,OF ) is given by

GL(n,OF ) =
⊔

t∈GL(n, Cq)

(t+Mat(n,̟OF )).(2.16)
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In particular, we have

vol(GL(n,OF )) =
n∏

j=1

(1− q−j).(2.17)

Proof. By definition, a = (aij)1≤i,j≤n ∈ GL(n,OF ) implies that aij ∈
OF and | det(a)| = 1. Now take any x ∈ Mat(n,̟OF ). First, we have
a + x ∈ Mat(n,OF ). Second, write x = ̟y with y ∈ Mat(n,OF ). By
definition, there exists z ∈ OF , such that det(a+x) = det(a)+̟z. Since
|̟z| ≤ q−1, by ultrametricity , we obtain | det(a+x)| = | det(a)+̟z| =
1, whence a+x ∈ GL(n,OF ) and the set on the right hand side of (2.16)
is contained in GL(n,OF ). Conversely, since Cq is a complete set of
representatives of the cosets of ̟OF in OF , for any A ∈ GL(n,OF ),
there exists a unique t ∈ GL(n, Cq), such that A ≡ t(mod̟OF ). This
completes the proof of (2.16).

Recalling that

#GL(n, Cq) = #GL(n,Fq) =
n−1∏

j=0

(qn − qj),

we arrive at (2.17). �

By Proposition 2.2, GL(n,OF ) is an open subgroup of GL(n, F ). It
follows that the restriction on GL(n,OF ) of the Haar measure (2.15)
on GL(n, F ) is a Haar measure on GL(n,OF ). Consequently, the nor-
malized Haar measure on GL(n,OF ) is given by

vol(·)∏n
j=1(1− q−j)

.(2.18)

Let T (n) be sampled uniformly from the finite set GL(n, Cq); let
V (n) be sampled with respect to the normalized Haar measure on
Mat(n,̟OF ) and independent of T (n).

Proposition 2.3. The random matrix T (n) + V (n) is a Haar random
matrix on GL(n,OF ); that is, the distribution law L(T (n) + V (n))
coincides with the normalized Haar measure on GL(n,OF ).

Proof. The proof follows immediately from Proposition 2.2 and the
formula (2.18) for the normalized Haar measure on GL(n,OF ). �

2.6. Diagonalization in Mat(n, F ).

Lemma 2.4 (See, e.g., Neretin [7, §1.3]). Every matrix A ∈ Mat(n, F )
can be written in the form

A = a · diag(̟−k1, ̟−k2, · · · , ̟−kn) · b, (a, b ∈ GL(n,OF )),(2.19)

where k1 ≥ k2 ≥ · · · ≥ kn ≥ −∞ and diag(̟−k1, ̟−k2, · · · , ̟−kn) is
the diagonal matrix with diagonal coefficients ̟−k1, ̟−k2, · · · , ̟−kn.
Moreover, the n-tuple (k1, k2, · · · , kn) is uniquely determined by the
matrix A.
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2.7. Square-units in F . The group of units of the ring OF is given
by O×

F := {x ∈ F : |x| = 1}. Let (O×
F )

2 be the subgroup of O×
F defined

by

(O×
F )

2 := {x ∈ O×
F : there exists a ∈ F such that x = a2}.

Let C×
q denote the set Cq \ {0} and define

(C×
q )

2 := {a ∈ C×
q | there exists y ∈ F such that a = y2}.

Denote

(F×
q )

2 := {a ∈ F×
q | there exists c ∈ F×

q such that a = c2}.
Lemma 2.5. Assume that F is non-dyadic. Then

(O×
F )

2 =
⊔

a∈(C×
q )2

(a+̟OF ).(2.20)

Consequently, the map π in (2.11) induces a bijection:

π : (C×
q )

2 bijection−−−−→ (F×
q )

2.(2.21)

Proof. Since F is non-dyadic, we have |2| = 1. For any x = α2 ∈ (O×
F )

2,
since Cq is a complete set of representatives for OF/̟OF , there exists
a ∈ C×

q , such that x ≡ a(mod̟OF ), that is,

|x− a| < 1.(2.22)

Take any b ∈ O×
F such that |b − x| < 1 = |2α|2. Then the polynomial

Pb(X) = X2 − b ∈ OF [X ] satisfies

|Pb(α)| < |P ′
b(α)|2.(2.23)

By Hensel’s lemma (see Cassels [2, pp. 49-51]), the inequality (2.23)
implies that there exists β ∈ F such that

Pb(β) = β2 − b = 0 and |β − α| ≤ |Pb(α)|
|P ′
b(α)|

< |P ′
b(α)| = 1.(2.24)

In particular, we have

{b ∈ O×
F : |b− x| < 1} = x+̟OF ⊂ (O×

F )
2.(2.25)

Combining (2.22) and (2.25), we get a ∈ (O×
F )

2. Hence

(O×
F )

2 ⊂
⊔

a∈(C×
q )2

(a+̟OF ).

Conversely, since (C×
q )

2 ⊂ (O×
F )

2, for any a ∈ (C×
q )

2, replacing x by a

in the above argument, the inclusion (2.25) implies a+̟OF ⊂ (O×
F )

2.
Hence ⊔

a∈(C×
q )2

(a +̟OF ) ⊂ (O×
F )

2.

�
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Remark 2.6. Recall that if F is non-dyadic, then the quotient group
O×
F /(O×

F )
2 has two elements.

2.8. Diagonalization in Sym(n, F ). In what follows, we fix a non-
square unit ε ∈ O×

F \ (O×
F )

2. By Remark 2.6, the following set

T := {̟−k|k ∈ Z} ⊔ {̟−kε|k ∈ Z} ⊔ {0}(2.26)

is a complete set of representatives for the quotient F/(O×
F )

2.

Lemma 2.7. Assume that F is non-dyadic. Then any symmetric ma-
trix A ∈ Sym(n, F ) can be written in the form

A = g · diag(x1, · · · , xn) · gt, x1, · · · , xn ∈ T , g ∈ GL(n,OF ).

Proof. Since T is a complete set of representatives for the quotient
F/(O×

F )
2, it suffices to show that any symmetric matrix A ∈ Sym(n, F )

is diagonalizable. Assume that A is not a zero matrix. We claim that,
up to passing A to gAgt for some g ∈ GL(n,OF ), we may assume that
the (1, 1)-coefficient of A has maximal absolute value.

Case 1: Assume first that there exists 1 ≤ i0 ≤ n, such that |Ai0i0| =
max1≤i,j≤n |Aij|. If i0 = 1, then there is nothing to prove. Otherwise,
take g = M(1i0), where M(1i0) is the permutation matrix associated
with the transposition (1i0). Then the matrix gAgt has Ai0i0 as its
(1, 1)-coefficient.

Case 2: Now assume that there exists i0 < j0 such that

|Ai0j0 | = max
1≤i,j≤n

|Aij| > max
1≤i≤n

|Aii|.(2.27)

Let us do operations on the submatrix indexed by {i0, j0} × {i0, j0} as
follows: [

2Ai0j0 + Ai0i0 + Aj0j0 Ai0j0 + Aj0j0
Ai0j0 + Aj0j0 Aj0j0

]

=

[
1 1
0 1

] [
Ai0i0 Ai0j0
Ai0j0 Aj0j0

] [
1 0
1 1

]
.

Since F is non-dyadic and non-Archimedean, (2.27) implies

|2Ai0j0 + Ai0i0 + Aj0j0| = |Ai0j0 + Aj0j0 | = |Ai0j0|.
This shows that we can reduce the second case to the first case where
a diagonal coefficient has maximal absolute value.

Now assume that

A =

[
x ct

c A1

]
, c ∈ F n−1,

such that x attains the maximal absolute value of all coefficients of A.
Then x−1c ∈ On−1

F and we have
[

1 0
−x−1c 1

] [
x ct

c A1

] [
1 −x−1ct

0 1

]
=

[
x 0
0 A1 − x−1cct

]
.
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By continuing the above procedure on the submatrix A1 − x−1cct, we
prove finally that A is diagonalizable. �

Remark 2.8. The assumption that F is non-dyadic is necessary in
Lemma 2.7. Indeed, if
[
λ1 0
0 λ2

]
=

[
a b
c d

] [
0 1
1 0

] [
a c
b d

]
,

[
a c
b d

]
∈ GL(2,OF ),

then

bc + ad = 0, ad− bc ∈ O×
F .

It follows that 2ad ∈ O×
F and hence 2 ∈ O×

F . This implies that F is
non-dyadic.

2.9. Characteristic functions. Denote by F̂ the Pontryagin dual

of the additive group F . Elements in F̂ are called characters of F .

Throughout the paper, we fix a non-trivial character χ ∈ F̂ such that

χ|OF
≡ 1 and χ is not constant on ̟−1OF .(2.28)

For any y ∈ F , define a character χy ∈ F̂ by χy(x) = χ(yx). The map

y 7→ χy from F to F̂ defines a group isomorphism.
We write explicitly characteristic functions of probability measures

in the following situations.
(i) If µ is a Borel probability measure on Fm, then µ̂ is defined on

Fm by

µ̂(y) :=

∫

Fm

χ(x · y)µ(dx),

where x · y :=
∑m

j=1 xjyj.

(ii) If µ is a Borel probability measure on Mat(n, F ), then µ̂ is defined
on Mat(n, F ) by

µ̂(A) :=

∫

Mat(n,F )

χ(tr(AM))µ(dM).

(iii) If µ is a Borel probability measure on Mat(N, F ), then µ̂ is
defined on Mat(∞, F ) by

µ̂(A) :=

∫

Mat(N,F )

χ(tr(AM))µ(dM).(2.29)

(iv) If ν is a Borel probability measure on Sym(n, F ), then ν̂ is
defined on Sym(n, F ) by

ν̂(A) :=

∫

Sym(n,F )

χ(tr(AS))ν(dS).
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(v) If ν is a Borel probability measure on Sym(N, F ), then ν̂ is defined
on Sym(∞, F ) by

ν̂(A) :=

∫

Sym(N,F )

χ(tr(AS))ν(dS).

Since the corresponding groups are locally compact, Theorem 31.5 in
Hewitt and Ross [3, p.212] implies that in the cases (i) (ii) and (iv), the
characteristic function µ̂ determines µ uniquely. The same statement
holds for the cases (iii) and (v). Indeed, although the additive groups
Mat(N, F ) and Mat(∞, F ) are not locally compact and we can not
apply the result on locally compact groups directly, we may use the
fact that any Borel probability measure µ on Mat(N, F ) is uniquely
determined by its finite dimensional projections (Cut∞n )∗(µ) and (2.29)

contains all information for ̂(Cut∞n )∗(µ), n = 1, 2, · · · . The case (v) is
treated similarly.

Remark 2.9. If µ is a probability measure on Mat(n, F ) which is in-
variant under the action of the group GL(n,OF )×GL(n,OF ), then for
any a, b ∈ GL(n,OF ), we have

µ̂(a · diag(̟−k1, ̟−k2, · · · , ̟−kn) · b) = µ̂(diag(̟−k1, ̟−k2, · · · , ̟−kn)).

(2.30)

Similarly, if ν is a GL(n,OF )-invariant probability measure on Sym(n, F ),
then for any g ∈ GL(n,OF ), we have

ν̂(g · diag(x1, · · · , xn) · gt) = ν̂(diag(x1, · · · , xn)).(2.31)

Similar statements hold for GL(∞,OF )×GL(∞,OF )-invariant proba-
bility measures on Mat(N, F ) and for GL(∞,OF )-invariant probability
measures on Sym(N, F ).

Let m ∈ N. Given any Borel probability measures µ1, · · · , µm on
Mat(N, F ) (resp. Sym(N, F )), their convolution µ1 ∗ · · · ∗µm is defined
as follows: let M1, · · · ,Mm be independent random matrices such that
L(Mi) = µi, i = 1, · · · , m and set

µ1 ∗ · · · ∗ µm := L(M1 + · · ·+Mm).

The characteristic function of µ1 ∗ · · · ∗ µm is given by the formula

(µ1 ∗ · · · ∗ µm)∧ =
m∏

i=1

µ̂i.(2.32)

3. Invariance and Ergodicity

In this section, we prove that all the measures on Mat(N, F ) from
the family {µ

k

= L(M
k

)|k ∈ ∆} introduced in Definition (1.1) are
GL(∞,OF )×GL(∞,OF )-invariant and ergodic and that all the mea-
sures on Sym(N, F ) from the family {ν

h

= L(S
h

)|h ∈ Ω} introduced
in Definition (1.4) are GL(∞,OF )-invariant and ergodic.
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3.1. GL(∞,OF )×GL(∞,OF )-invariance for µ
k

’s.

Proposition 3.1. For any k ∈ ∆, the probability measure µ
k

on
Mat(N, F ) is GL(∞,OF )×GL(∞,OF )-invariant.

Recall that the normalized integral −
∫
is introduced in (2.14).

Remark 3.2. For any n ≥ 1, we have

−
∫

̟−nOF

χ(x)dx = 0.(3.33)

Indeed, for any fixed n ≥ 1, the character χ defines a non-trivial char-
acter χ̃ of the finite group Γn := ̟−nOF/OF by

χ̃(γ) := χ(x) ( if γ = x+OF , x ∈ ̟−nOF ).

By orthogonality of the character χ̃ and the trivial character, we have

−
∫

̟−nOF

χ(x)dx =
1

#Γn

∑

γ∈Γn

χ̃(γ) = 0,

and (3.33) is proved.

Lemma 3.3. For any y ∈ F and any l ∈ Z, we have

−
∫

̟lOF

χ(xy)dx = 1̟−lOF
(y).(3.34)

Proof. First assume that y ∈ ̟−lOF . Then for any x ∈ ̟lOF , we have
xy ∈ OF . Consequently, by (2.28), we have −

∫
̟lOF

χ(xy)dx = 1. Now

assume that y /∈ ̟−lOF . Since the Haar measure dvol on F is invariant
under the multiplication action by any element u ∈ O×

F , without loss
of generality, we may assume that y = ̟k with k ≤ −l− 1. By (3.33),
we have

−
∫

̟lOF

χ(xy)dx = −
∫

̟lOF

χ(̟kx)dx = −
∫

OF

χ(̟k+lz)dz = 0.

This completes the proof of (3.34). �

Lemma 3.4. For any m ∈ N, the distribution of the random vector

(X
(1)
i )mi=1 is GL(m,OF )-invariant.

Proof. Denote X = (X
(1)
i )mi=1. It suffices to prove that for any A ∈

GL(m,OF ) and any y = (y1, · · · , ym) ∈ Fm, we have

E[χ(X · y)] = E[χ((AX) · y)].(3.35)

By the independence between X
(1)
i : i = 1, · · · , m and Lemma 3.3, we

have

E[χ(X · y)] =
n∏

j=1

E[χ(Xjyj)] =

n∏

j=1

1OF
(yj) = 1Om

F
(y).
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Similarly,

E[χ((AX) · y)] = E[χ(X · (Aty))] = 1Om
F
(Aty) = 1Om

F
(y).

Hence we get (3.35). The proof of Lemma 3.4 is completed. �

Proof of Proposition 3.1. It suffices to prove that the following proba-
bility measures

L[X(1)
i Y

(1)
j ]i,j∈N and L([Zij]i,j∈N).

are GL(∞,OF ) × GL(∞,OF )-invariant. The invariance of both mea-
sures follows immediately from Lemma 3.4. �

3.2. GL(∞,OF )×GL(∞,OF )-ergodicity for µ
k

’s.

Theorem 3.5. For any k ∈ ∆, the probability measure µ
k

on Mat(N, F )
is GL(∞,OF )×GL(∞,OF )-ergodic.

The map M 7→ (Mii)i∈N from Mat(N, F ) to FN induces an affine
map

Ψ : P(Mat(N, F )) → P(FN).

Let S(n) denote the group of permutations of the set {1, 2, · · · , n} and
set S(∞) :=

⋃
n∈N S(n). The group S(∞) acts naturally on FN by

permutations of coordinates.

Lemma 3.6. For any µ ∈ Pinv(Mat(N, F )), we have Ψ(µ) ∈ PS(∞)
inv (FN).

Moreover, the restriction map

Ψ : Pinv(Mat(N, F )) → PS(∞)
inv (FN)(3.36)

is an affine embedding.

Proof. Let µ ∈ Pinv(Mat(N, F )). For any σ ∈ S(∞), the associated
permutation matrix Mσ, defined by

Mσ(i, j) := 1σ(i)=j ,

is an element in GL(∞,OF ). By the invariance of µ under the mul-
tiplication by all permutation matrices Mσ, σ ∈ S(∞) on left and on

right, it is easy to see that Ψ(µ) ∈ PS(∞)
inv (FN).

Now we show that the map (3.36) is injective. By the definition of
pushforward map, the Fourier transform of Ψ(µ) is given as follows:
for any x1, · · · , xr ∈ F ,

Ψ̂(µ)((x1, · · · , xr, 0, 0, · · · )) = µ̂(diag(x1, · · · , xr, 0, 0, · · · )).(3.37)

By Remark 2.9, µ̂ is determined by

µ̂(diag(x1, · · · , xr, 0, 0, · · · )), x1, · · · , xr ∈ F.

Now, the equality (3.37) implies that µ̂ and hence µ itself is determined
uniquely by Ψ(µ). The injectivity of the map (3.36) is proved. �
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In what follows, for any convex set C, we denote by Ext(C) the set
of extreme points of C.

Remark 3.7. For any group action of a group G on a Polish space X ,
we have

Ext(PG
inv(X )) ⊂ PG

erg(X ).

The converse inclusion is in general not true. However, the De Finetti
Theorem claims that for the group action of S(∞) on X N, we indeed
have

Ext(PS(∞
inv (X N)) = PS(∞)

erg (X N).

Proof of Theorem 3.5. By construction, for any k ∈ ∆, the measure
Ψ(µ

k

) is Bernoulli. Consequently, by the De Finetti Theorem,

Ψ(µ
k

) ∈ PS(∞)
erg (FN) = Ext(PS(∞)

inv (FN)).

It is clear that for any convex subset C of Ext(PS(∞)
inv (FN)), we have

C ∩ Ext(PS(∞)
inv (FN)) ⊂ Ext(C).

Taking C = Ψ(Pinv(Mat(N, F ))), we see that

Ψ(µ
k

) ∈ Ext(Ψ(Pinv(Mat(N, F )))).(3.38)

By Lemma 3.6, Ψ is an affine embedding. Hence

Ext(Ψ(Pinv(Mat(N, F )))) = Ψ(Ext(Pinv(Mat(N, F )))).

The relation (3.38) implies µ
k

∈ Ext(Pinv(Mat(N, F ))). By Remark
3.7, we get the desired relation µ

k

∈ Perg(Mat(N, F )). �

Remark 3.8. As a corollary of our classification theorem, in our sit-
uation, we indeed have

Ext(Pinv(Mat(N, F ))) = Perg(Mat(N, F )).

3.3. GL(∞,OF )-invariance for ν
h

’s.

Proposition 3.9. For any h ∈ Ω, the probability measure ν
h

on
Sym(N, F ) is GL(∞,OF )-invariant.

Lemma 3.10. The normalized Haar measure on Sym(n,OF ) is invari-
ant under the natural action of the group GL(n,OF ).

Proof. For any g ∈ GL(n,OF ), the linear map

Sym(n,OF ) −→ Sym(n,OF )
S 7→ gSgt

(3.39)

is invertible. Clearly, if we use the group identification

Sym(n,OF ) ≃ O
n2+n

2
F ,

then the linear map (3.39) is represented by an invertible matrix from

GL(n
2+n
2
,OF ). Hence by Remark 2.1, it preserves the normalized Haar

measure. �
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Proof of Proposition 3.9. It suffices to prove the GL(∞,OF )-invariance
of the following probability measures on Sym(N, F ):

L([X(1)
i X

(1)
j ]i,j∈N) and L([Hij]i,j∈N).

The GL(∞,OF )-invariance of L([X(1)
i X

(1)
j ]i,j∈N) follows immediately

from Lemma 3.4, while the GL(∞,OF )-invariance of L([Hij ]i,j∈N) fol-
lows from Lemma 3.10. �

3.4. GL(∞,OF )-ergodicity for ν
h

’s.

Theorem 3.11. For any h ∈ Ω, the probability measure ν
h

on Sym(N, F )
is GL(∞,OF )-ergodic.

The map S 7→ (Sii)i∈N from Sym(N, F ) to FN induces an affine map

Φ : P(Sym(N, F )) → P(FN).

Lemma 3.12. For any ν ∈ Pinv(Sym(N, F )), we have Φ(ν) ∈ PS(∞)
inv (FN).

Moreover, the restriction map

Φ : Pinv(Sym(N, F )) → PS(∞)
inv (FN)

is an affine embedding.

Proof. The proof is similar to that of Lemma 3.6. �

Proof of Theorem 3.11. The proof is similar to that of Theorem 3.5 by
using Lemma 3.12 instead of Lemma 3.6. �

4. Explicit computation of characteristic functions

In this section, we give explicit formulae for characteristic functions
of measures from the two families {µ

k

: k ∈ ∆} and {ν
h

: h ∈ Ω}.
4.1. Measures on Mat(N, F ). By the elementary observation (2.30),
for studying the characteristic functions of µ

k

, it suffices to compute

µ̂
k

(diag(̟−ℓ1, · · · , ̟−ℓr , 0, 0, · · · ))
for any r ∈ N and any ℓ1, · · · , ℓr ∈ Z.

Proposition 4.1. For any k = (kn)n∈N ∈ ∆ and any ℓ ∈ Z, we have

µ̂
k

(̟−ℓe11) = exp
(
− log q ·

∞∑

j=1

(kj + ℓ)1{kj+ℓ≥1}

)
.(4.40)

More generally, for any ℓ1, · · · , ℓr ∈ Z, we have

µ̂
k

(diag(̟−ℓ1, · · · , ̟−ℓr , 0, 0, · · · )) =
r∏

i=1

µ̂
k

(̟−ℓie11).(4.41)

Introduce a function Θ : F → C by

Θ(x) =

∫

OF×OF

χ(z1z2 · x)dz1dz2.(4.42)
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Lemma 4.2. The function Θ is given by

Θ(x) = q−ℓ1{ℓ≥1} , |x| = qℓ.

Proof. Let |x| = qℓ. Then there exists u ∈ O×
F , such that x = ̟−ℓu.

By rotation invariance, Θ(x) = Θ(̟−ℓ). Now by Lemma 3.3,

Θ(̟−ℓ) = E[χ(̟−ℓX
(1)
1 Y

(1)
1 )] = E

(
E
[
χ(̟−ℓX

(1)
1 Y

(1)
1 )
∣∣∣Y (1)

1

])

= E(1OF
(̟−ℓY

(1)
1 )) = P(|Y (1)

1 | ≤ q−ℓ) = q−ℓ1{ℓ≥1}.

�

Remark 4.3. In the formulae below, for graphical convenience, we
write exp(− log q · ℓ1{ℓ≥1}) instead of q−ℓ1{ℓ≥1}.

Proof of Proposition 4.1. The identity (4.41) follows from the indepen-
dence between all diagonal coefficient of M

k

. So we only need to prove
the identity (4.40).

First assume that k = (kn)n∈N ∈ ∆ is such that lim
n→∞

kn = −∞. By

the independence between all X
(n)
1 and Y

(n)
1 , n ∈ N, we have

µ̂
k

(̟−ℓe11) = E
[
χ
(
tr
([ ∞∑

n=1

̟−knX
(n)
i Y

(n)
j

]
i,j∈N

̟−ℓe11

))]

= E[χ(
∞∑

n=1

̟−kn−ℓX
(n)
1 Y

(n)
1 )] =

∞∏

n=1

E[χ(̟−kn−ℓX
(n)
1 Y

(n)
1 )].

By Lemma 4.2, we get

µ̂
k

(̟−ℓe11) =
∞∏

n=1

exp
(
− log q · (kn + ℓ)1{kn+ℓ≥1}

)

=exp
(
− log q ·

∞∑

n=1

(kn + ℓ)1{kn+ℓ≥1}

)
.

Now assume that there exists m ∈ N ∪ {0} and k ∈ Z, such that

k1 ≥ · · · ≥ km > k and kn = k for any n ≥ m+ 1.

By previous computation and the formula (2.32) for the characteris-
tic functions of convolutions of probability measures, we only need to
consider the case when k = (kn)n∈N is such that

kn = k ∈ Z for any n ∈ N.

In this case, µ
k

= L(̟−kZ) with Z an infinite random matrix sampled
uniformly from Mat(N,OF ). Hence by Lemma 3.3, we obtain

µ̂
k

(̟−ℓe11) = E[χ(̟−ℓ−kZ11)] = 1OF
(̟−ℓ−k) = 1{k+ℓ≤0}.
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But if kn = k for any n ∈ N, we have

1{k+ℓ≤0} = exp
(
− log q ·

∞∑

n=1

(kn + ℓ)1{kn+ℓ≥1}

)
.(4.43)

This proves the identity (4.40) in the second case and we complete the
proof of Proposition 4.1. �

4.2. Measures on Sym(N, F ). By the elementary observation (2.31),
for studying the characteristic function of ν

h

, it suffices to compute

ν̂
h

(diag(x1, · · · , xr, 0, 0, · · · ))
for any r ∈ N and any x1, · · · , xr ∈ F .

Recall the definition (1.7) for the function θ:

θ(x) =

∫

OF

χ(z2 · x)dz.

Proposition 4.4. Let h = (k;k,k′) ∈ Ω. Then for any x ∈ F , we
have

ν̂
h

(xe11) = 1OF
(̟−kx) ·

∞∏

n=1

θ(̟−knx)

∞∏

n=1

θ(ε̟−k′nx).(4.44)

More generally, for any r ∈ N and any x1, · · · , xr ∈ F , we have

ν̂
h

(diag(x1, · · · , xr, 0, 0, · · · )) =
r∏

i=1

ν̂
h

(xie11).(4.45)

Define a function L2 : O×
F → {−1, 1} by setting L2(u) = 1 if u is

a square element in O×
F and setting L2(u) = −1 if u is a non-square

element in O×
F . Denote

̺q :=

{
1, if q ≡ 1(mod 4)
i, if q ≡ 3(mod 4)

.(4.46)

Recall that for any x ∈ F , we have |x| = q−ordF (x).

Proposition 4.5. The function θ : F → C is continuous and satisfies
the following properties:

(i) If |x| ≤ 1, then θ(x) = 1.
(ii) If |x| > 1 and ordF (x) ≡ 0(mod 2), then θ(x) = |x|−1/2.
(iii) If |x| > 1 and ordF (x) ≡ 1(mod 2), then by writing x = ̟−ℓu

with ℓ ∈ N and u ∈ O×
F , we have

θ(x) = sχ̺q ·
L2(u)

|x|1/2 ,(4.47)

where sχ ∈ {−1, 1} depends on the choice of χ.
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In particular, θ satisfies the following property:

θ(x)2 = θ(εx)2 6= 0, for all x ∈ F .(4.48)

Moreover, if x = ̟−ℓu with ℓ ∈ Z ∪ {−∞} and u ∈ O×
F

|θ(x)|2 = exp(− log |x| · 1|x|>1) = exp(−ℓ log q · 1{ℓ≥1}).(4.49)

Let us postpone the proof of Proposition 4.5 to §10.

Lemma 4.6. Fix an element a ∈ F . Then for any k = (kj)j∈N ∈ ∆,
the following infinite product

∞∏

j=1

θ(a ·̟−kj)(4.50)

converges. Moreover, if lim
j→∞

kj = k ∈ Z, then

∞∏

j=1

θ(a ·̟−kj) = 1OF
(a ·̟−k) ·

∏

j∈{n|kn>k}

θ(a ·̟−kj)(4.51)

Proof. Let k = (kj)j∈N ∈ ∆. Since k is a non-increasing sequence, we
have

|a ·̟−k1| ≥ |a ·̟−k2| ≥ · · · ≥ |a ·̟−kj | · · · .

Then either there exists j0 ∈ N, such that |a ·̟−kj | ≤ 1 for all j ≥ j0
or |a · ̟−kj | > 1 for all j ∈ N. Consequently, the infinite product
(4.50) either is a finite product or equals 0. The identity (4.51) follows
immediately form (4.49). �

Proof of Proposition 4.4. The identity (4.45) follows from the indepen-
dence between all diagonal coefficient of S

h

. So we only need to prove
the identity (4.44).

Case 1: h = (−∞;k,k′), k ∈ ∆[−∞], k′ ∈ ∆♯[−∞].
In this case, we have

ν
h

= L(W
k

+ εW
k

′) = L(W
k

) ∗ L(εW
k

′).

Thus for proving (4.45), it suffices to prove it for the probability mea-
sures L(W

k

) and L(εW
k

′). For instance, we have

L̂(W
k

)(xe11) = E
[
χ
(
tr
([ ∞∑

n=1

̟−knX
(n)
i X

(n)
j

]
i,j∈N

xe11

))]

=E
[
χ
( ∞∑

n=1

̟−kn(X
(n)
1 )2x

)]
= E

[ ∞∏

n=1

χ
(
̟−kn(X

(n)
1 )2x

)]
.
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Then by dominated convergence theorem and the independence be-

tween all X
(n)
1 , n ∈ N, we get

L̂(W
k

)(xe11) =
∞∏

n=1

E
[
χ
(
̟−kn(X

(n)
1 )2x

)]
=

∞∏

n=1

θ(̟−knx).

Similar computation works for L(εW
k

′).

Case 2: There exists k ∈ Z and h = (k;k,k′), k ∈ ∆[k], k′ ∈ ∆♯[k].
In this case, we have

ν
h

= L(W
k

+ εW
k

′ +̟−kH) = L(W
k

) ∗ L(εW
k

′) ∗ L(̟−kH).

By (2.32), for proving (4.45), it suffices to prove it for the probability
measures

L(W
k

), L(εW
k

′) and L(̟−kH).

By the computation in Case 1, we only need to verify (4.45) for L(̟−kH).
A simple computation yields the desired identity

̂L(̟−kH)(xe11) = E
[
χ
(
tr
(
̟−kHxe11

))]

= E
[
χ
(
̟−kH11x

)]
= 1OF

(̟−kx).

�

Remark 4.7. Let us prove the identity (1.5) mentioned in Remark 1.5.
Denote

σ1 := L
([ 2∑

n=1

X
(n)
i X

(n)
j

]
i,j∈N

)
, σ2 := L

(
ε
[ 2∑

n=1

X
(n)
i X

(n)
j

]
i,j∈N

)
.

Note that σ1, σ2 are both GL(∞,OF )-invariant. Since for any x ∈ F ,
we have θ(x)2 = θ(εx)2. Consequently

σ̂1(diag(x1, · · · , xr, 0, · · · )) =
r∏

i=1

θ(xi)
2 =

r∏

i=1

θ(εxi)
2

= σ̂2(diag(x1, · · · , xr, 0, · · · )).

It follows that σ1 = σ2.

5. Uniqueness of parametrization

In this section, we will prove two uniqueness results, Proposition 5.1
and Proposition 5.3.
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5.1. Measures on Mat(N, F ).

Proposition 5.1. Let k, k̃ ∈ ∆. Then µ
k

= µ
k̃

if and only if k = k̃.

Lemma 5.2. The map

k = (kj)j∈N 7→
( ∞∑

j=1

(kj + ℓ)1{kj+ℓ≥1}

)
ℓ∈Z

from ∆ to (Z ∪ {+∞})Z is injective.

Proof. We need to show that if k = (kj)j∈N and k̃ = (k̃j)j∈N are two
distinct elements in ∆, then there exists ℓ ∈ Z, such that

∞∑

j=1

(kj + ℓ)1{kj+ℓ≥1} 6=
∞∑

j=1

(k̃j + ℓ)1{k̃j+ℓ≥1}.(5.52)

By assumption, there exists j0 ∈ N, such that

kj = k̃j for any 1 ≤ j < j0 and kj0 6= k̃j0.(5.53)

By symmetry, let us assume that kj0 > k̃j0. Under this assumption

(whether k̃j0 equals to −∞ or not), we will have kj0 ∈ Z. Now by
taking ℓ = 1− kj0 ∈ Z, we have

{
kj + ℓ = k̃j + ℓ ≥ 1 for any 1 ≤ j < j0.

kj0 + ℓ = 1 and k̃j0 + ℓ ≤ 0.

Consequently,

∞∑

j=1

(kj + ℓ)1{kj+ℓ≥1} ≥
j0∑

j=1

(kj + ℓ) = 1 +

j0−1∑

j=1

(kj + ℓ),

while
∞∑

j=1

(k̃j + ℓ)1{k̃j+ℓ≥1} =

j0−1∑

j=1

(k̃j + ℓ) =

j0−1∑

j=1

(kj + ℓ).

Thus we prove that the inequality (5.52) holds for ℓ = 1− kj0. �

Proof of Proposition 5.1. Proposition 5.1 follows from Proposition 4.1,
Lemma 5.2 and the fact any probability measure on Mat(N, F ) is
uniquely determined by its characteristic function. �

5.2. Measures on Sym(N, F ).

Proposition 5.3. Let h, h̃ ∈ Ω. Then ν
h

= ν
h̃

if and only if h = h̃.

Remark 5.4. Any element k = (kj)j∈N ∈ ∆ is uniquely determined by
the bi-infinite sequence in N ∪ {∞}:

(
#{j ∈ N|kj = ℓ}

)
ℓ∈Z
.
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Proof of Proposition 5.3. Let h = (k;k,k′) and h̃ = (k̃; k̃, k̃′) be two
elements in Ω such that ν

h

= ν
h̃

. By Proposition 4.4, this is equivalent
to the following identity: for any x ∈ F ,

1OF
(̟−kx) ·

∞∏

n=1

θ(̟−knx)
∞∏

n=1

θ(ε̟−k′nx)

=1OF
(̟−k̃x) ·

∞∏

n=1

θ(̟−k̃nx)
∞∏

n=1

θ(ε̟−k̃′nx).

(5.54)

Recall the identity (4.49). By taking the modulus and square of both
sides of (5.54) and substituting x = ̟−ℓu with ℓ ∈ Z and u ∈ O×

F , we
obtain

1{k+ℓ≤0} · q−
∑∞

n=1(kn+ℓ)1{kn+ℓ≥1}−
∑∞

n=1(k
′
n+ℓ)1{k′n+ℓ≥1}

=1{k̃+ℓ≤0} · q
−
∑∞

n=1(k̃n+ℓ)1{k̃n+ℓ≥1}
−
∑∞

n=1(k̃
′
n+ℓ)1{k̃′n+ℓ≥1} .

(5.55)

Claim 1: k = k̃.
Indeed, if k = −∞, then the left hand side of the identity (5.55)

never vanishes. Consequently, so does the right hand side. It follows

that k̃ = −∞. If k ∈ Z. Then the left hand side of the identity (5.55)
vanishes at ℓ = 1 − k. Consequently, so does the right hand side of

(5.55) vanishes both at ℓ = 1 − k. It follows that k̃ + 1 − k > 0 or

equivalently k̃ ≥ k. By symmetry, we have k = k̃.

Claim 2: (k,k′) = (k̃, k̃′).

For simplifying notation, let us define k∗, k̃∗ ∈ ∆ as follows: if k =

k̃ = −∞, then set k∗ := k, k̃∗ := k̃; if k = k̃ ∈ Z, then both k

and k̃ are finite sequences in Z>k, set k
∗ and k̃

∗ by adding infinitely

many k. Clearly, for proving (k,k′) = (k̃, k̃′), it suffices to prove that

(k∗,k′) = (k̃∗, k̃′). By Remark 5.4, it suffices to prove that for any
l ∈ Z,

#{n ∈ N|k∗n = l} = #{n ∈ N|k̃∗n = l};
#{n ∈ N|k′n = l} = #{n ∈ N|k̃′n = l}.

(5.56)

Applying (4.43) to 1{k+ℓ≤0} and 1{k̃+ℓ≤0}, we may write (5.54) as

q−
∑∞

n=1(k
∗
n+ℓ)1{k∗n+ℓ≥1}−

∑∞
n=1(k

′
n+ℓ)1{k′n+ℓ≥1}

=q
−
∑∞

n=1(k̃
∗
n+ℓ)1{k̃∗n+ℓ≥1}

−
∑∞

n=1(k̃
′
n+ℓ)1{k̃′n+ℓ≥1} .

(5.57)

By Lemma 5.2 and Remark 5.4, the equality (5.57) implies that for
any l ∈ Z, we have

#{n ∈ N|k∗n = l}+#{n ∈ N|k′n = l}
=#{n ∈ N|k̃∗n = l}+#{n ∈ N|k̃′n = l}.

(5.58)
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The identity (5.58) implies in particular that the two identities in (5.56)
hold or are violated simultaneously. Now assume by contradiction that
there exists l0 ∈ Z, such that the identities in (5.56) are violated.
Obviously, such l0 verifies

k < l0 ≤ max{kn, k̃n, k′n, k̃′n} < +∞.

Now let lmax ∈ Z be the largest l0 such that the identities in (5.56)
are violated. Substituting x = ̟lmax−1u with u ∈ O×

F into the identity
(5.54), we obtain

∞∏

n1=1

θ(̟−kn1̟lmax−1u)

∞∏

n2=1

θ(ε̟−k′n2̟lmax−1u)

=

∞∏

m1=1

θ(̟−k̃m1̟lmax−1u)

∞∏

m2=1

θ(ε̟−k̃′m2̟lmax−1u).

(5.59)

By the assumption of lmax, we know that for any l > lmax,

#{n ∈ N|k∗n = l} = #{n ∈ N|k̃∗n = l};
#{n ∈ N|k′n = l} = #{n ∈ N|k̃′n = l}.

(5.60)

Since lmax > k, by definition of k∗ and k̃∗ we also have for any l > lmax:

#{n ∈ N|k∗n = l} = #{n ∈ N|kn = l};
#{n ∈ N|k̃∗n = l} = #{n ∈ N|k̃n = l}.

(5.61)

By Proposition 4.5, the function θ never vanishes. Hence by the iden-
tities (5.60) and (5.61), we can remove simultaneously all those terms

concerning kn1 > lmax, k
′
n2
> lmax and k̃m1 > lmax, k̃

′
m2

> lmax from
both sides of identity (5.59). Again by Proposition 4.5, for any kn1 <

lmax, k
′
n2
< lmax and k̃m1 < lmax, k̃

′
m2

< lmax, we have

θ(̟−kn1̟lmax−1u) = θ(ε̟−k′n2̟lmax−1u)

=θ(̟−k̃m1̟lmax−1u) = θ(ε̟−k̃′m2̟lmax−1u) = 1.

Consequently, we may remove simultaneously all those terms concern-

ing kn1 < lmax, k
′
n2
< lmax and k̃m1 < lmax, k̃

′
m2

< lmax from both sides
of identity (5.59) as well. Then we arrive at the identity

θ(̟−1u)D · θ(ε̟−1u)D
′

= θ(̟−1u)D̃ · θ(ε̟−1u)D̃
′
,(5.62)

where

D : = #{n ∈ N|kn = lmax} and D′ := #{n ∈ N|k′n = lmax};
D̃ : = #{n ∈ N|k̃n = lmax} and D̃′ := #{n ∈ N|k̃′n = lmax}.

By definitions for ∆[k] and ∆♯[k], we must have

D, D̃ ∈ N ∪ {0} and D′, D̃′ ∈ {0, 1}.(5.63)
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The identity (5.58) now implies that

D +D′ = D̃ + D̃′.(5.64)

By definition of lmax, we have D 6= D′. Without loss of generality, we

may assume that D′ = 0 and D̃′ = 1. Then the identity (5.62) becomes

θ(̟−1u)D = θ(̟−1u)D̃ · θ(ε̟−1u).(5.65)

But now D = D̃ + 1 and since θ never vanishes, the identity (5.65) is
equivalent to

θ(̟−1u) = θ(ε̟−1u).

Since |̟−1u| > 1, ordF (̟
−1u) = −1 ≡ 1(mod 2) and L2(ε) = −1, by

Proposition 4.5, we have θ(ε̟−1u) = −θ(̟−1u). Consequently, we
would have θ(̟−1u) = θ(ε̟−1u) = 0. This contradicts to the non-
vanishing property of θ. Hence we complete the proof of Claim 2.

Combining Claim 1 and Claim 2, we complete the proof of Proposi-
tion 5.3. �

6. Ergodic measures as limits of orbital measures: the

Vershik-Kerov ergodic method

In this section, we recall the Vershik-Kerov ergodic method for deal-
ing with ergodic measures for inductively compact groups. The general
setting is as follows. Let

K(1) ⊂ K(2) ⊂ · · · ⊂ K(n) ⊂ · · · ⊂ K(∞),

be an increasing chain of topological groups such that for any n ∈ N,
the group K(n) is compact and K(∞) is the inductive limit:

K(∞) = lim
−→

K(n).

For any n ∈ N, let mK(n) denote the normalized Haar measure of K(n).
Fix a group action of K(∞) on a Polish space X .

Definition 6.1 (Orbital measures). For any x ∈ X and any n ∈ N, we
define the K(n)-orbital measure generated by x, denoted by mK(n)(x),
as the unique K(n)-invariant probability measure on X supported on
the K(n)-orbit K(n) · x := {g · x|g ∈ K(n)}. In other words, mK(n)(x)
is the image of mK(n) under the map g 7→ g · x from K(n) to X .

Definition 6.2. Let L K(∞)(X ) ⊂ P(X ) be the set of probability mea-
sures µ on X such that there exists x ∈ X verifying mK(n)(x) =⇒ µ.

Theorem 6.3 (Vershik [23, Theorem 1]). The following inclusion holds:

PK(∞)
erg (X ) ⊂ L

K(∞)(X ).(6.66)

More precisely, if µ is an ergodic K(∞)-invariant Borel probability
measure on X , then for µ-almost every point x ∈ X , the weak conver-
gence mK(n)(x) =⇒ µ holds.
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Vershik’s method in [23] was further developed in a series of papers
[20, 21, 6, 10] by Kerov, Olshanski and Vershik.

Remark 6.4. In general, the converse inclusion L K(∞)(X ) ⊂ PK(∞)
erg (X )

does not hold. There is however a simple situation, see the note [16],

where PK(∞)
erg (X ) always coincides with L K(∞)(X ).

For simplifying notation, in what follows, we denote

L (Mat(N, F )) : = L
GL(∞,OF )×GL(∞,OF )(Mat(N, F ));

L (Sym(N, F )) : = L
GL(∞,OF )(Sym(N, F )).

For any n ∈ N, we set

ORBn(Mat(n, F )) := {mGL(n,OF )×GL(n,OF )(M)|M ∈ Mat(n, F )}.
By identifying Mat(n, F ) in a natural way with the subset of Mat(N, F ),
we have P(Mat(n, F )) ⊂ P(Mat(N, F )). In particular,

ORBn(Mat(n, F )) ⊂ P(Mat(N, F ))

Definition 6.5. Let ORB∞(Mat(N, F )) denote the set of probability
measures µ on Mat(N, F ) such that there exists a subsequence of posi-
tive integers n1 < n2 < · · · and a sequence (µnk

)k∈N of orbital measures
with µnk

∈ ORBnk
(Mat(nk, F )), so that

µnk
=⇒ µ.

Similarly, in the symmetric case, for any n ∈ N, we set

ORBn(Sym(n, F )) := {mGL(n,OF )(S)|S ∈ Sym(n, F )}.
By identifying Sym(n, F ) in a natural way with a subspace of Sym(N, F ),
we have

ORBn(Sym(n, F )) ⊂ P(Sym(N, F )).

Definition 6.6. Let ORB∞(Sym(N, F )) denote the set of probability
measures ν on Sym(N, F ) such that there exists a subsequence of posi-
tive integers n1 < n2 < · · · and a sequence (νnk

)k∈N of orbital measures
with νnk

∈ ORBnk
(Sym(nk, F )), so that

νnk
=⇒ ν.

Remark 6.7. It is easy to see that we have

ORB∞(Mat(N, F )) ⊂ Pinv(Mat(N, F ));

ORB∞(Sym(N, F )) ⊂ Pinv(Sym(N, F )).

Proposition 6.8. The following two inclusions hold:

L (Mat(N, F )) ⊂ ORB∞(Mat(N, F ));(6.67)

L (Sym(N, F )) ⊂ ORB∞(Sym(N, F )).(6.68)
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Proof. For any n,m ∈ N such that m ≥ n, let

Cut∞n : Mat(N, F ) → Mat(n, F )

Cutmn : Mat(m,F ) → Mat(n, F )

be the maps of cutting the n× n left-upper corner.
For simplifying notation, denote

K(n) := GL(n,OF )×GL(n,OF ).(6.69)

Let µ ∈ L (Mat(N, F )). By definition, there exists an infinite matrix
X0 ∈ Mat(N, F ) and a subsequence (nk)k∈N of positive integers such
that

mK(nk)(X0) =⇒ µ.

This is equivalent to say that for any N ∈ N, we have

(Cut∞N )∗[mK(nk)(X0)] =⇒ (Cut∞N )∗(µ).(6.70)

Take

Xk = Cut∞nk
(X0) ∈ Mat(nk, F ).

Then we have

mK(nk)(Xk) =⇒ µ.

Indeed, it suffices to prove that for any N ∈ N, we have

(Cut∞N )∗[mK(nk)(Xk)] =⇒ (Cut∞N )∗(µ).(6.71)

For any k ∈ N, we clearly have

(Cut∞nk
)∗[mK(nk)(Xk)] = (Cut∞nk

)∗[mK(nk)(X0)](6.72)

But if nk ≥ N , we have Cut∞N ◦Cut∞nk
= Cut∞N . Combining with (6.72),

we see that, once nk ≥ N , we have

(Cut∞N )∗[mK(nk)(Xk)] = (Cut∞N )∗[mK(nk)(X0)].

Now it is clear that (6.70) implies (6.71). The first inclusion (6.67) is
proved. The proof of the second inclusion (6.68) is the same. �

7. Asymptotic multiplicativity for orbital integrals

7.1. GL(n,OF )×GL(n,OF )-orbital integrals. Recall Definition 4.42
and Lemma 4.2:

Θ(x) =

∫

OF×OF

χ(z1z2 · x)dz1dz2 = q−ℓ1{ℓ≥1} , |x| = qℓ.

In what follows, we use the notation (6.69).

Theorem 7.1. Let n, r ∈ N be such that r ≤ n. Suppose that D and
A are two diagonal matrices given by:

D = diag(x1, · · · , xn), A = diag(a1, · · · , ar, 0, · · · , 0)
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where x1, · · · , xn, a1, · · · , ar ∈ F . Then

∣∣∣
∫

K(n)

χ(tr(g1Dg2A))dg1dg2 −
r∏

i=1

n∏

j=1

Θ(aixj)
∣∣∣ ≤ 2(1−

r−1∏

w=0

(1− qw−n))2,

(7.73)

where dg1dg2 is the normalized Haar measure on K(n).
In particular, for any a ∈ F , we have

∣∣∣
∫

K(n)

χ(a · tr(g1Dg2e11))dg1dg2 −
n∏

j=1

Θ(axj)
∣∣∣ ≤ 2q−2n.(7.74)

Remark 7.2. Obviously, we have
∫

K(n)

χ(tr(g1Dg2A))dg1dg2 =

∫

K(n)

χ(tr(g1Dg
−1
2 A))dg1dg2.

The following elementary lemma will be useful.

Lemma 7.3. Let r ≤ n be two positive integers. Define

S(r × n) :=
{
M ∈ Mat(r × n, Cq)

∣∣∣rankFq
(M(mod̟OF )) = r

}
.

Then we have

#S(r × n) =

r−1∏

w=0

(qn − qw).(7.75)

For any rectangular matrix M ∈ S(r × n), we have

#{t ∈ GL(n, Cq)|tij =Mij , ∀1 ≤ i ≤ r, 1 ≤ j ≤ n} =

n−w−1∏

w=0

(qn − qr+w).

In particular, the above cardinality does not depend on the choice of
M ∈ S(r × n).

Proof of Theorem 7.1. Fix n, r ∈ N and fix the two diagonal matri-
ces D and A. Let T = T (n), T ′ = T ′(n) be two independent copies
of random matrices sampled uniformly from the finite set GL(n, Cq),
and let V = V (n), V ′ = V ′(n) be two independent random matrices
sampled uniformly from Mat(n,̟OF ) and independent of T, T ′. By
Proposition 2.3, we have

∫

K(n)

χ(tr(g1Dg2A))dg1dg2 = E[χ(tr((T + V )D(T ′ + V ′)A))].
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Since the transposed random matrix (T ′+V ′)t and the original random
matrix T ′ + V ′ have the same distribution, we have

E[χ(tr((T + V )D(T ′ + V ′)A))] = E[χ(tr((T + V )D(T ′ + V ′)tA))]

=E
[
χ(

r∑

i=1

n∑

j=1

(Tij + Vij)(T
′
ij + V ′

ij)aixj)
]

=
1

[#GL(n, Cq)]2
∑

t,t′∈GL(n,Cq)

E
[
χ(

r∑

i=1

n∑

j=1

(tij + Vij)(t
′
ij + V ′

ij)aixj)
]
.

By Lemma 7.3, we obtain

E[χ(tr((T + V )D(T ′ + V ′)A))]

=
1

[#S(r × n)]2

∑

M,M ′∈S(r×n)

E
[
χ
( r∑

i=1

n∑

j=1

(Mij + Vij)(M
′
ij + V ′

ji)aixj

)]
.

For simplifying notation, for any pair of rectangular matrices M,M ′ ∈
Mat(r × n, Cq), we denote

F (M,M ′) := E
[
χ
( r∑

i=1

n∑

j=1

(Mij + Vij)(M
′
ij + V ′

ji)aixj

)]
.

Then we may write

E[χ(tr((T + V )D(T ′ + V ′)A))]

=
1

[#S(r × n)]2

[ ∑

M,M ′∈Mat(r×n,Cq)

F (M,M ′) + E1
]

︸ ︷︷ ︸
denoted by I

,

where

E1 := −
∑

M,M ′∈Mat(r×n,Cq)\S(r×n)

F (M,M ′).

Note that ifMij and Vij are sampled independently and uniformly from
the finite set Cq and from the compact additive group̟OF respectively,
then Mij + Vij is uniformly distributed on OF . It follows that

r∏

i=1

n∏

j=1

Θ(aixj) =
1

[#Mat(r × n, Cq)]2
∑

M,M ′∈Mat(r×n,Cq)

F (M,M ′).

Consequently,

E[χ(tr((T + V )D(T ′ + V ′)A))] =
I

[#Mat(r × n, Cq)]2
+ E2

=

r∏

i=1

n∏

j=1

Θ(aixj) +
E1

[#Mat(r × n, Cq)]2
+ E2,
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where

E2 :=
I

[#S(r × n)]2
− I

[#Mat(r × n, Cq)]2
.

Now let us estimate these error terms. By the obvious estimate
|F (M,M ′)| ≤ 1, we have

|E1| ≤ [#(Mat(r × n, Cq) \ S(r × n))]2.

Note that |I| ≤ [#S(r × n)]2. Hence

|E2| = |I|
( 1

[#S(r × n)]2
− 1

[#Mat(r × n, Cq)]2
)

≤
(
#Mat(r × n, Cq)−#S(r × n)

#Mat(r × n, Cq)

)2

.

Taking (7.75) into account, we get

∣∣∣∣∣E[χ(tr((T + V )D(T ′ + V ′)A))]−
r∏

i=1

n∏

j=1

Θ(aixj)

∣∣∣∣∣

≤ |E1|
[#Mat(r × n, Cq)]2

+ |E2|

≤ 2

(
#Mat(r × n, Cq)−#S(r × n)

#Mat(r × n, Cq)

)2

≤ 2(1−
r−1∏

w=0

(1− qw−n))2.

�

Theorem 7.4 (Uniform Asymptotic Multiplicativity). Let n, r ∈ N
be such that r ≤ n. Suppose that D and A are two diagonal matrices
given by:

D = diag(x1, · · · , xn), A = diag(a1, · · · , ar, 0, · · · , 0)

where x1, · · · , xn, a1, · · · , ar ∈ F . Then

∣∣∣
∫

K(n)

χ(tr(g1Dg2A))dg1dg2 −
r∏

i=1

∫

K(n)

χ(ai · tr(g1Dg2e11))dg1dg2
∣∣∣

≤ 2(1−
r−1∏

w=0

(1− qw−n))2 + 2rq−2n.

(7.76)
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Proof. By inequalities (7.73) and (7.74), we have
∫

K(n)

χ(tr(g1Dg2A))dg1dg2 =
r∏

i=1

n∏

j=1

Θ(aixj) + ε0

=

r∏

i=1

( ∫

K(n)

χ(ai · tr(g1Dg2e11))dg1dg2 + εi

︸ ︷︷ ︸
=
∏n

j=1 Θ(aixj)

)
+ ε0,

with the errors ε0, ε1, · · · , εr controlled by

|ε0| ≤ 2(1−
r−1∏

w=0

(1− qw−n))2 and |εi| ≤ 2q−2n, i = 1, · · · , r.

Using the elementary inequalities |∏n
j=1Θ(aixj)| ≤ 1 and by a simple

computation, we get

∣∣∣
∫

K(n)

χ(tr(g1Dg2A))dg1dg2 −
r∏

i=1

∫

K(n)

χ(ai · tr(g1Dg2e11))dg1dg2
∣∣∣

≤ ε0 + ε1 + · · ·+ εr

≤ 2(1−
r−1∏

w=0

(1− qw−n))2 + 2rq−2n.

�

7.2. GL(n,OF )-orbital integrals. Recall the definition (1.7) for the
function θ : F → C.

Theorem 7.5. Let n, r ∈ N be such that r ≤ n. Given two diagonal
matrices D and A:

D = diag(x1, · · · , xn), A = diag(a1, · · · , ar, 0, · · · , 0)
where x1, · · · , xn, a1, · · · , ar ∈ F , we have

∣∣∣
∫

GL(n,OF )

χ(tr(gDgtA))dg −
r∏

i=1

n∏

j=1

θ(aixj)
∣∣∣ ≤ 2 · (1−

r−1∏

w=0

(1− qw−n)).

(7.77)

In particular, for any a ∈ F , we have

∣∣∣
∫

GL(n,OF )

χ(a · tr(gDgte11))dg −
n∏

j=1

θ(a · xj)
∣∣∣ ≤ 2q−n.(7.78)

Proof. Fix n, r ∈ N and fix the two diagonal matrices D and A. Let
T = T (n) be a random matrix uniformly distributed on the finite set
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GL(n,Fq), and let V = V (n) be a random matrix uniformly distributed
on Mat(n,̟OF ) and independent of T . By Proposition 2.3, we have

∫

GL(n,OF )

χ(tr(gDgtA))dg = E

[
χ

(
r∑

i=1

n∑

j=1

aixj(Tij + Vij)
2

)]
.

By similar arguments used in the proof of Theorem 7.1, we may get
the desired inequality (7.77). The second inequality (7.78) follows im-
mediately by taking e = 1 and a1 = a. �

Theorem 7.6 (Uniform Asymptotic Multiplicativity). Let n, r ∈ N be
such that r ≤ n. Given two diagonal matrices D and A:

D = diag(x1, · · · , xn), A = diag(a1, · · · , ar, 0, · · · , 0)
where x1, · · · , xn, a1, · · · , ae ∈ F , we have

∣∣∣
∫

GL(n,OF )

χ(tr(gDgtA))dg −
r∏

i=1

∫

GL(n,OF )

χ(aitr(gDg
te11))dg

∣∣∣

≤ 2(1−
r−1∏

w=0

(1− qw−n)) + 2rq−n.

Proof. The proof is similar to that of Theorem 7.4. �

8. The completion of the classification of ergodic

measures

8.1. The case of Perg(Mat(N, F )).

Theorem 8.1 (Multiplicativity Theorem for Orbital Limit Measures).
Let µ ∈ ORB∞(Mat(N, F )). Then for any r ∈ N and for any finite
sequence x1, · · · , xr in F , we have

µ̂(diag(x1, · · · , xr, 0, 0, · · · )) =
r∏

j=1

µ̂(xje11).(8.79)

In particular, we have

ORB∞(Mat(N, F )) = Perg(Mat(N, F )).

Proof. Let µ ∈ ORB∞(Mat(N, F )). Then by definition, there ex-
ists an increasing sequence (nk)k∈N of positive integers and a sequence
(µnk

)k∈N of orbital measures with µnk
∈ ORBnk

(Mat(nk, F )), such
that

µnk
=⇒ µ as k → ∞.(8.80)

Take any x1, · · · , xr ∈ F . By the inequality (7.76), we have

lim
k→∞

∣∣∣µ̂nk
(diag(x1, · · · , xr, 0, · · · ))−

r∏

j=1

µ̂nk
(xje11)

∣∣∣ = 0.(8.81)
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Combining (8.80) and (8.81), we get the desired identity (8.79).
By Vershik’s Theorem 6.3 and Proposition 6.8, to obtain (8.81), we

only need to prove the inclusion

ORB∞(Mat(N, F )) ⊂ Perg(Mat(N, F )).(8.82)

Recall the definition (3.36) of the affine map Ψ:

Ψ : Pinv(Mat(N, F )) → PS(∞)
inv (FN).

The identity (8.79) implies that for any µ ∈ ORB∞(Mat(N, F )), the
marginal measure on the diagonal matrices Ψ(µ) is a Bernoulli measure
on FN. Consequently, by exactly the same argument as in the proof of
Theorem 3.5, we can prove the desired inclusion (8.82). �

An immediate consequence of Theorem 8.1 and the argument used
in the proof of Theorem 8.1 is the following Ismagilov-Olshanski mul-
tiplicativity in our setting.

Corollary 8.2 (Ismagilov-Olshanski multiplicativity). An invariant
probability measure µ ∈ Pinv(Mat(N, F )) is ergodic if and only if for
any r ∈ N and for any finite sequence x1, · · · , xr in F , we have

µ̂(diag(x1, · · · , xr, 0, 0, · · · )) =
r∏

j=1

µ̂(xje11).

Remark 8.3. The reader may compare our method with the different
methods used in, for instance, Olshansk-Vershik [10]. The Olshanski-
Vershik argument relies on the Ismagilov-Olshanski multiplicativity: the
multiplicativity of the characteristic function is equivalent to the ergod-
icity of the corresponding probability measure. In different contexts,
this multiplicativity is established e.g. by Ismagilov [4, 5], Nessonov [8],
Voiculescu [24], Olshanski [11], Stratila-Voiculescu [19], Pickrell [14],
Vershik-Kerov [22], Olshanski [12].

In our situation, the Ismagilov-Olshanski multiplicativity follows as
a corollary.

Now we may concentrate on the classification of ORB∞(Mat(N, F )).
For this purpose, we need to study the weak convergence of probability
measures on Mat(N, F ). The following standard proposition implies
that the weak convergence of probability measures on Mat(N, F ) is
equivalent to the locally uniform convergence of corresponding charac-
teristic functions. For completeness, we include its proof in the Appen-
dix.

Proposition 8.4. A sequence of invariant probability measures (µn)n∈N
in Pinv(Mat(N, F )) converges weakly to an invariant probability mea-
sure µ ∈ Pinv(Mat(N, F )) if and only if for any r ∈ N and any
ℓ1, · · · , ℓr ∈ Z, we have

µ̂(diag(̟−ℓ1, · · · , ̟−ℓr , 0, · · · )) = lim
n→∞

µ̂n(diag(̟
−ℓ1, · · · , ̟−ℓr , 0, · · · ))
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and the convergence is uniform on any subset of type

{(ℓ1, · · · , ℓr)|ℓ1, · · · , ℓr ∈ Z≤C}.
Lemma 8.5. Let µ be a Borel probability measure on Mat(N, F ). The
function x ∈ F 7→ µ̂(xe11) ∈ C is uniformly continuous. In particular,
we have

lim
ℓ→−∞

µ̂(̟−ℓe11) = 1.

Proof. Note that the function x 7→ µ̂(xe11) is the characteristic function
of the marginal probability measure (Cut∞1 )∗µ on F . The uniform
continuity of this function then follows immediately, see, e.g., Hewitt
and Ross [3, Theorem 31.5, p.212]. �

Lemma 8.6. Assume that we are given a sequence of probability mea-
sures (µn)n∈N, such that µn ∈ ORBn(Mat(n, F )). A necessary and
sufficient condition for this sequence to be tight is the following:

(C1) There exists γ ∈ Z, such that the supports supp(µn) are all
contained in the following compact subset of Mat(N, F ):

{
X ∈ Mat(N, F )

∣∣∣|Xij| ≤ qγ, ∀i, j ∈ N
}
.

Proof. The above condition (C1) is clearly sufficient for the sequence
to be tight. Now suppose that the sequence (µn)n∈N is tight. By
assumption, suppose that µn is the GL(n,OF ) × GL(n,OF )-orbital
measure supported on an orbit generated by Xn ∈ Mat(n,OF ). By
Lemma 2.4, we may assume that

Xn = diag(x
(n)
1 , · · · , x(n)n ), |x(n)1 | ≥ · · · ≥ |x(n)n |.

Assume by contradiction that the condition (C1) is not satisfied. Then
there exists a subsequence (nk)k∈N of positive integers, such that

lim
k→∞

|x(nk)
1 | = ∞.(8.83)

Passing to a subsequence if necessary, we may assume that there exists
a probability measure µ on Mat(N, F ), such that µnk

=⇒ µ. By Lemma
8.5, for any a ∈ F , we have

lim
|a|→0

lim
k→∞

µ̂nk
(ae11) = lim

|a|→0
µ̂(ae11) = 1.

That is,

lim
|a|→0

lim
k→∞

∫

K(nk)

χ(a · tr(g1Xnk
g2e11))dg1dg2 = 1.(8.84)

By (7.74), the relation (8.84) implies that

lim
|a|→0

lim
k→∞

nk∏

j=1

Θ(a · x(nk)
j ) = 1.(8.85)
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Since |Θ(x)| ≤ 1, for any a ∈ F×, we have

lim
k→∞

|
nk∏

j=1

Θ(a · x(nk)
j )| ≤ lim

k→∞
|Θ(a · x(nk)

1 )| = 0.

This contradicts to (8.85). Thus the condition (C1) is necessary for the
sequence (µn)n∈N to be tight. �

Recall that

∆ =
{
k = (kj)

∞
j=1

∣∣∣kj ∈ Z ∪ {−∞}; k1 ≥ k2 ≥ · · ·
}

as a subset of (Z ∪ {−∞})N, is assumed to be equipped with the sub-
space topology of Tychonoff’s product topology on (Z ∪ {−∞})N.
Lemma 8.7. Let ℓ ∈ Z. Then

k 7→ f(k) :=

∞∑

j=1

(kj + ℓ)1{kj+ℓ≥1}

defines a continuous map from ∆ to Z ∪ {+∞}.
Proof. It suffices to prove Lemma (8.7) for ℓ = 0. We want to prove

that k 7→ f(k) is continuous at some point k(0) = (k
(0)
j )j∈N ∈ ∆.

Case 1: f(k(0)) = +∞. This means that k
(0)
j ≥ 1 for any j ∈ N.

Consequently, for any A ∈ R, we may take n large enough so that∑n
j=1 k

(0)
j > A. Then for any k ∈ ∆ sufficiently close to k(0), we have

kj = k
(0)
j for j = 1, · · · , n. For such k, we have f(k) ≥∑n

j=1 kj > A.

Case 2: f(k(0)) < +∞. Then choose n so that

k
(0)
1 ≥ · · · ≥ k

(0)
n−1 > 0 ≥ k(0)n ≥ · · · .

For any k ∈ ∆ sufficiently close to k

(0), we have kj = k
(0)
j for j =

1, · · · , n−1 and kn ≤ 0. For such k, we have f(k) =
∑n−1

j=1 kj = f(k(0)).
The proof of Lemma 8.7 is completed. �

Theorem 8.8. The map k 7→ µ
k

induces a bijection between ∆ and
Perg(Mat(N, F )).

Proof. The injectivity of the map k 7→ µ
k

from ∆ to Perg(Mat(N, F ))
has already been proved in Proposition 5.1. We only need to prove
that the map is also surjective.

Let µ ∈ Perg(Mat(N, F )). By Theorem 8.1, µ ∈ ORB∞(Mat(N, F )).
Consequently, there exists a sequence (nl)l∈N of positive integers and a
sequence (µnl

)l∈N such that µnl
∈ ORBnl

(Mat(nl, F )) and

µnl
=⇒ µ as l → ∞.(8.86)
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By Lemma 2.4, we may assume that µnl
is the K(nl)-orbital measure

supported on the orbit K(nl) ·Xnl
with

Xnl
= diag(̟−k

(nl)
1 , · · · , ̟−k

(nl)
nl ), k

(nl)
1 ≥ · · · ≥ k(nl)

nl
≥ −∞.

By Lemma 8.6, the convergence (8.86) implies that supl∈N k
(nl)
1 < ∞.

Consequently, passing to a subsequence of (nl)l∈N if necessary, we may
assume that for any j ∈ N, there exists kj ∈ Z ∪ {−∞} such that

lim
l→∞

k
(nl)
j = kj.(8.87)

The convergence (8.86) and the relation (7.74) now imply that, for any
ℓ ∈ Z, we have

µ̂(̟−ℓe11) = lim
l→∞

∞∏

j=1

Θ(̟−ℓ̟−k
(nl)

j )

= lim
l→∞

exp
(
− log q ·

∞∑

j=1

(k
(nl)
j + ℓ)1

{k
(nl)
j +ℓ≥1}

)
.

By Lemma 8.7 and (8.87), we get

µ̂(̟−ℓe11) = exp
(
− log q ·

∞∑

j=1

(kj + ℓ)1{kj+ℓ≥1}

)
.(8.88)

Let us define k := (kj)j∈N ∈ ∆. Comparing (8.99) with the formula
(4.40) in Proposition 4.1, we get

µ̂(̟−ℓe11) = µ̂
k

(̟−ℓe11) for all ℓ ∈ Z.(8.89)

But by the multiplicativity of µ̂ established in Theorem (8.9) and the
multiplicativity of µ̂

k

established in Proposition 4.1, the above identity
(8.89) implies µ = µ

k

.
The proof of Theorem 8.8 is completed. �

8.2. The case of Perg(Sym(N, F )).

Theorem 8.9 (Multiplicativity Theorem for Orbital Limit Measures).
Let ν ∈ ORB∞(Sym(N, F )). Then for any r ∈ N and for any finite
sequence (x1, · · · , xr) in F , we have

ν̂(diag(x1, · · · , xr, 0, 0, · · · )) =
r∏

j=1

ν̂(xie11).

In particular, we have

ORB∞(Sym(N, F )) = Perg(Sym(N, F )).

Proof. The proof is similar to that of Theorem 8.1. �
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Corollary 8.10 (Ismagilov-Olshanski multiplicativity). An invariant
probability measure µ ∈ Pinv(Sym(N, F )) is ergodic if and only if for
any r ∈ N and for any finite sequence x1, · · · , xr in F , we have

ν̂(diag(x1, · · · , xr, 0, 0, · · · )) =
r∏

j=1

ν̂(xje11).

Lemma 8.11. Let ν be a Borel probability measure on Sym(N, F ).
Then we have

lim
|x|→0

ν̂(xe11) = 1.

Proof. The proof is similar to that of Lemma 8.5. �

Lemma 8.12. Assume that we are given a sequence of probability mea-
sures (νn)n∈N, such that νn ∈ ORBn(Sym(N, F )). The necessary and
sufficient condition for this sequence to be tight is the following:

(C2) There exists γ ∈ Z, such that the supports supp(νn) are all
contained in the following compact subset of Sym(N, F ):

{
X ∈ Sym(N, F )

∣∣∣|Xij| ≤ qγ , ∀i, j ∈ N
}
.

Proof. The above condition (C2) is clearly sufficient for the sequence to
be tight. Now suppose that the sequence is tight, we shall prove that
(C2) is satisfied. By assumption, suppose that νn is the GL(n,OF )-
orbital measure supported on the orbit GL(n,OF ) · Xn. By Lemma
2.7, we may assume that

Xn = diag(x
(n)
1 , · · · , x(n)n ), |x(n)1 | ≥ · · · ≥ |x(n)n |.

Now we argue by contradiction. If the condition is not satisfied, then
there exists a subsequence (nk)k∈N of positive integers such that

lim
k→∞

|x(nk)
1 | = ∞.(8.90)

Passing to a subsequence if necessary, we may assume that there exists
a probability measure ν on Sym(N, F ), such that νnk

=⇒ ν. By Lemma
8.11, for any a ∈ F , we have

lim
|a|→0

lim
k→∞

ν̂nk
(ae11) = lim

|a|→0
ν̂(ae11) = 1.

That is

lim
|a|→0

lim
k→∞

∫

GL(nk ,OF )

χ(a · tr(gXnk
gte11))dg = 1.(8.91)

By (7.78) in Theorem 7.5, the relation (8.91) implies that

lim
|a|→0

lim
k→∞

nk∏

j=1

θ(a · x(nk)
j ) = 1.(8.92)
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Using the elementary inequality |θ(x)| ≤ 1 and (8.90) and Proposition
4.5 , for any a ∈ F×, we have

lim
k→∞

|
nk∏

j=1

θ(a · x(nk)
j )| ≤ lim

k→∞
|θ(a · x(nk)

1 )| = 0.

This contradicts to (8.92). Thus the condition (C2) is necessary for the
sequence (νn)n∈N to be tight. �

8.2.1. Classification of Perg(Sym(N, F )). Recall that by Lemma 4.6,
for any a ∈ F and any k = (kj)j∈N ∈ ∆, we may define an infinite
product

∏∞
j=1 θ(a ·̟−kj).

Lemma 8.13. Let a ∈ F be a fixed element. Then

k = (kj)j∈N 7→
∞∏

j=1

θ(a ·̟−kj)

defines a continuous map from ∆ to C.

Proof. If a = 0, the assertion is obvious. Now assume that |a| = qγ

with γ ∈ Z. Suppose that k(n) = (k
(n)
j )j∈N converges to k = (kj)j∈N.

That is, for any j ∈ N ,

lim
n→∞

k
(n)
j = kj.(8.93)

We need to show that

lim
n→∞

∞∏

j=1

θ(a ·̟−k
(n)
j ) =

∞∏

j=1

θ(a ·̟−kj).(8.94)

First denote k := lim
j→∞

kj ∈ Z ∪ {−∞}.

Case 1: k + γ ≤ 0.
In this case, there exists j0 ∈ N, such that kj0+γ ≤ 0. Since Z∪{−∞}

is a discrete space, by (8.93), there exists n0 ∈ N, such that for any
n ≥ n0,

sup
j≥j0

(k
(n)
j + γ) = k

(n)
j0

+ γ ≤ 0.(8.95)

Hence by property (i) in Proposition 4.5, for any j ≥ j0 and n ≥ n0,
we have

θ(a ·̟−k
(n)
j ) = θ(a ·̟−kj) = 1.

Consequently, we have

lim
n→∞

∞∏

j=1

θ(a ·̟−k
(n)
j ) = lim

n→∞

j0−1∏

j=1

θ(a ·̟−k
(n)
j )

=

j0−1∏

j=1

θ(a ·̟−kj) =

∞∏

j=1

θ(a ·̟−kj).
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Case 2: k + γ > 0.
In this case, by the previous argument, we have

∞∏

j=1

θ(a ·̟−kj) = 0.

By (8.93), for any N ∈ N, there exists n0 ∈ N, such that for any n ≥ n0

and any 1 ≤ j ≤ j0 +N , we have k
(n)
j = kj. This implies

lim sup
n→∞

∣∣∣
∞∏

j=1

θ(a ·̟−k
(n)
j )
∣∣∣ ≤ lim sup

N→∞

(
lim sup
n→∞

∣∣∣
j0+N∏

j=1

θ(a ·̟−k
(n)
j )
∣∣∣
)

≤ lim sup
N→∞

∣∣∣
j0+N∏

j=1

θ(a ·̟−kj)
∣∣∣ =

∣∣∣
∞∏

j=1

θ(a ·̟−kj)
∣∣∣ = 0.

Hence the desired relation (8.94) holds. �

Theorem 8.14. Assume that F is non-dyadic. Then the map h 7→ ν
h

induces a bijection between Ω and Perg(Sym(N, F )).

Proof. The injectivity of the map h 7→ ν
h

from Ω to Perg(Sym(N, F ))
has already been proved in Proposition 5.3. We only need to prove
that the map is also surjective.

Assume that ν ∈ Perg(Sym(N, F )). Since

Perg(Sym(N, F )) = ORB∞(Sym(N, F )),

there exists a sequence (νnl
)l∈N of orbital measures satisfying νnl

∈
ORBnl

(Sym(nl, F )) such that

νnl
=⇒ ν as l → ∞.(8.96)

By Lemma 2.7, we may assume that νnl
is the GL(nl,OF )-orbital mea-

sure supported on the orbit GL(nl,OF ) ·Xnl
with

Xnl
= diag(x

(nl)
1 , · · · , x(nl)

nl
), x

(nl)
1 , · · · , x(nl)

nl
∈ T ,

where T is given in (2.26). If for any multi-set 1 B with elements in F ,
we denote by B∗ the multi-set of non-zero elements of B. Then there
exist

k

(nl) = (k
(nl)
j )j∈N, k

′(nl) = (k
′(nl)
j )j∈N ∈ ∆

such that the following two multi-sets coincide:

{x(nl)
1 , · · · , x(nl)

nl
}∗ = ({̟−k

(nl)
j |j ∈ N} ∪ {ε̟−k

′(nl)
j |j ∈ N})∗.

By Lemma 8.12, the weak convergence (8.96) implies that

sup
l∈N

k
(nl)
1 <∞ and sup

l∈N
k

′(nl)
1 <∞.

1By multi-set, we mean that the multiplicities of elements are respected. In par-
ticular, if B is a multi-set, then B∪B will be a multi-set, such that the multiplicities
for each element is multiplied by 2.
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Consequently, passing to a subsequence if necessary, we may assume
that for any j ∈ N, there exist kj, k

′
j ∈ Z ∪ {−∞} and we have

lim
l→∞

k
(nl)
j = kj, lim

l→∞
k

′(nl)
j = k′j.(8.97)

Now by the weak convergence (8.96) and the relation (7.78) , for any
x ∈ F , we have

ν̂(xe11) = lim
n→∞

∞∏

j=1

θ(x̟−k
(n)
j )

∞∏

j=1

θ(xε̟−k
′(n)
j )

= lim
l→∞

∞∏

j=1

θ(x̟−k
(nl)

j )
∞∏

j=1

θ(xε̟−k
′(nl)

j ).

By the continuity of the map in Lemma 8.13 and (8.97), we get

ν̂(xe11) =
∞∏

j=1

θ(x̟−kj)
∞∏

j=1

θ(xε̟−k′j).(8.98)

Now by using the identity θ(x̟−kj)2 = θ(xε̟−k′j)2 for any x ∈ F
and j ∈ N and by moving certain elements ( in Z and with multiplici-
ties larger than 1) from (k′j)j∈N to the sequence (kj)j∈N, we get a new

non-increasing sequence (k̃j)j∈N and a new strictly decreasing sequence

(k̃′j)j∈N of finite or infinite lengths in Z ∪ {−∞} such that the identity
(8.98) is transformed to

ν̂(xe11) =

∞∏

j=1

θ(x̟−k̃j)

∞∏

j=1

θ(xε̟−k̃′j).(8.99)

Assume first that lim
j→∞

k̃j = −∞. Then

h = (−∞; (k̃j)j∈N, (k̃
′
j)j∈N)

is an element in Ω. Comparing (8.99) with the formula in Proposition
4.4, we get

ν̂(xe11) = ν̂
h

(xe11) for all x ∈ F .

But by the multiplicativity of ν̂ established in Theorem (8.9) and the
multiplicativity of ν̂

h

established in Proposition 4.4, the above identity
implies ν = ν

h

.

Assume now that limj→∞ k̃j = k ∈ Z. Then using the relation (4.51),
we have

∞∏

j=1

θ(x̟−k̃j) = 1OF
(x̟−k)

∏

j∈{n|k̃n>k}

θ(x̟−k̃j).(8.100)
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Moreover, we also have

1OF
(x̟−k)

∞∏

j=1

θ(xε̟−k̃′j) = 1OF
(x̟−k)

∏

j∈{n|k̃′n>k}

θ(xε̟−k̃′j).(8.101)

It suffices to check for x ∈ F such that |x̟−k| ≤ 1. For k̃′j such that

k̃′j ≤ k (if they exist), we have |xε̟−k̃′j | = |x̟−kε̟k−k̃′j | ≤ 1. Hence

θ(xε̟−k̃′j) = 1 by the property (i) in Proposition 4.5. The identity
(8.101) is proved. Denote

k̂j :=

{
k̃j, if k̃j > k

−∞ if k̃j = k
and k̂′j :=

{
k̃′j, if k̃′j > k

−∞ if k̃′j ≤ k
.

Now, h = (k; (k̂j)j∈N, (k̂
′
j)j∈N), being an element in {k}×∆[k]×∆♯[k],

is an element of Ω. Combining (8.99), (8.100) and (8.101), we obtain

ν̂(xe11) =

∞∏

j=1

θ(x̟−k̃j)

∞∏

j=1

θ(xε̟−k̃′j)

= 1OF
(x̟−k)

[ ∏

j∈{n|k̃n>k}

θ(x̟−k̃j)
][ ∏

j∈{n|k̃′n>k}

θ(xε̟−k̃′j)
]
.

In this case, we also have

ν̂(xe11) = ν̂
h

(xe11), for all x ∈ F .

By the same argument as above in using the multiplicativities of ν̂ and
ν̂
h

, we get ν = ν
h

.
The proof of Theorem 8.14 is completed. �

9. Properties of the parametrization

9.1. The parametrizations are homeomorphisms.

Proof of Theorem 1.2. By Theorem 8.8, we only need to prove that
the map k 7→ µ

k

from ∆ to Perg(Mat(N, F )) and its inverse are both
continuous. Note that since ∆ and Perg(Mat(N, F )) are metrizable,
their topologies are determined by convergence of sequences.

If a sequence (k(n))n∈N converges in ∆ to a point k(0) ∈ ∆, then

sup
n,j

k
(n)
j <∞.(9.102)

Consequently, the family of the measures µ
k

(n) , all being supported
on a common compact subset of Mat(N, F ), is tight. Thus to prove
that µ

k

(n) converges weakly to µ
k

(0), it suffices to prove that the latter
one is the unique accumulation point of the former family of measures.
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Now let µ be an accumulation point of the sequence (µ
k

(n))n∈N. By
definition, there exists a subsequence (nj)j∈N such that

µ = lim
j→∞

µ
k

(nj) .

Since k(n) −→ k

(0), by explicit formula (4.40) in Proposition 4.1 and
Lemma 8.7, the charateristic function of µ is given by

µ̂(diag(̟−ℓ1, · · · , ̟−ℓr , 0, 0, · · · ))
= lim
j→∞

µ̂
k

(nj )(diag(̟
−ℓ1, · · · , ̟−ℓr , 0, 0, · · · ))

=µ̂
k

(0)(diag(̟−ℓ1, · · · , ̟−ℓr , 0, 0, · · · )), (ℓj ∈ Z).

This implies that we have µ = µ
k

(0).
Conversely, if µ

k

(n) converges to µ
k

(0). By using the same argument
in the proof of Lemma 8.6, we can still get the relation (9.102). Again
by compactness argument, it suffices to show that k(0) is the unique
accumulation point for the sequence k(n). But if k is an accumulation
point of k(n), then µ

k

is an accumulation point of µ
k

(n), whence µ
k

=
µ
k

(0). Combining with Proposition 5.1 we have k = k

(0).
The proof of Theorem 1.2 is completed. �

Proof of Theorem 1.6. By Theorem 8.14, we only need to prove that
the map h 7→ ν

h

from Ω to Perg(Sym(N, F )) and its inverse are both
continuous. The proof of this part is similar to that of Theorem 1.2 as
above. �

9.2. The parametrizations are semi-group homomorphisms. On
∆ is equipped with an Abelian semi-group structure. Given any two
points k = (kn)n∈N and k′ = (k′n)n∈N in ∆, we define k⊕∆k

′ as follows:
(i) If inf kn = inf k′n = −∞, then we define k ⊕∆ k

′ ∈ ∆ to be the

non-increasing rearrangement of the sequence (k̃n)n∈N, where

k̃2n−1 := kn and k̃2n := k′n (n = 1, 2, · · · ).
(ii) If k = max{inf kn, inf k′n} ∈ Z, then we define k ⊕ k

′ ∈ ∆ to
be the non-increasing rearrangement of the sequence (k∗n)n∈N, that is
any sequence exhausting the integers larger than k and from k and
k

′, repeated with corresponding multiplicity. For instance, if k =
(6, 2, 2,−3,−3,−3,−3, · · · ),k′ = (4, 3, 0,−1,−∞, · · · ), then we define

k⊕∆ k

′ = (6, 4, 3, 2, 2, 0,−1,−3,−3,−3,−3, · · · ).
Clearly, we have

Proposition 9.1. The map k 7→ µ
k

defines a semi-group isomorphism
between (∆,⊕∆) and (Perg(Mat(N, F )), ∗). More precisely, we have

µ
k

∗ µ
k

′ = µ
k⊕∆k

′.
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An Abelian semigroup structure ⊕Ω on Ω such that h → ν
h

defines
semi-groups isomorphism between (Ω,⊕Ω) and (Perg(Sym(N, F )), ∗) is
introduced in the same way.

10. Proof of Proposition 4.5

In this section, we always assume that F is non-dyadic. We will use
the following change of variables in the integration over a local field.
To introduce the formula for change of variables, we need the notion of
F -analytic functions. A function ϕ : U → V , with U, V open subsets of
F , is called F -analytic, if in some neighbourhood of any point in U it
is given by a convergent power series, it is called F -bi-analytic, if ϕ is
invertible such that both ϕ : U → V and ϕ−1 : V → U are F -analytic.

Theorem 10.1 (Change of variables, see Schoissengeier [18]). Let ϕ :
U → V be a F -bi-analytic function. Then for any integrable function
f : U → C, we have

∫

U

f(ϕ(x))|ϕ′(x)|dx =

∫

V

f(y)dy,

where ϕ′ is the formal derivative of ϕ.

We will also need the following classical result from number theory
concerning Gauss sums for finite field Fq. For the reader’s convenience,
we include its standard proof in Appendix.

Denote by λ2 the unique multiplicative character for F×
q of order 2,

that is,

λ2(a) =

{
1, if a ∈ (F×

q )
2

−1, if a /∈ (F×
q )

2
.

By convention, we extend the definition of λ2 to the whole finite field
Fq by setting λ2(0) = 0.

Denote the set of additive characters of Fq by F̂q. Given any τ ∈
F̂q\{1} (that is, τ is non-trivial character of Fq) and any a ∈ Fq, denote
by τa the character of Fq defined by τa(x) = τ(a · x). It is a standard

fact that the map a 7→ τa is an group isomorphism between Fq and F̂q.

Lemma 10.2 (Gauss sums). Fix an element τ ∈ F̂q \ {1}. Then for
any a ∈ F×

q , we have
∑

x∈Fq

τa(x
2) = λ2(a) ·

∑

x∈Fq

τ(x2).(10.103)

Moreover,
{∑

x∈Fq

τa(x
2)|a ∈ F×

q

}
= {̺q

√
q,−̺q

√
q}.
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Denote by O∗
F the set of non-zero elements in OF and denote by

(O∗
F )

2 the square elements in O∗
F , that is,

(O∗
F )

2 := {a ∈ O∗
F : there exists b ∈ F such that a = b2}.

Denote the square function x 7→ x2 by ψ(x) = x2.

Proposition 10.3. There exists a partition

O∗
F = U1 ⊔ U2,

such that the square function ψ(x) = x2 induces two F -bi-analytic func-
tions:

ψ : Ui → (O∗
F )

2, i = 1, 2.

Recall that by Lemma 2.5, the group (O×
F )

2 is a disjoint union of q−1
2

balls of radius q−1:

(O×
F )

2 =
⊔

a∈(C×
q )2

(a+̟OF ).

Lemma 10.4. Any element a ∈ (O×
F )

2 has two square roots α1, α2 ∈
O×
F such that (α1 +̟OF ) ∩ (α2 +̟OF ) = ∅ and we have

ψ(αi +̟OF ) ⊂ a+̟OF , i = 1, 2.(10.104)

Moreover, we have two bijective maps :

αi +̟OF
x 7→ψ(x)=x2−−−−−−−→ a+̟OF , i = 1, 2.(10.105)

Proof. For any a ∈ (O×
F )

2, there exist exactly two elements α1, α2 ∈
O×
F , such that

α1 = −α2 and α2
1 = α2

2 = a.

Hence |α1 − α2| = |2α| = |α| = 1 and

(α1 +̟OF ) ∩ (α2 +̟OF ) = ∅.
For any z ∈ OF and i = 1, 2, we have

(αi +̟z)2 = a+̟(2zαi +̟z2) ∈ a +̟OF ,

this proves (10.104).
By Hensel’s lemma (2.24), for i = 1, 2, if a′ ∈ a +̟OF , then there

exists α′
i ∈ αi + ̟OF such that (α′

i)
2 = a′. Hence the maps (10.105)

for i = 1, 2 are both surjective. Now fix i ∈ {1, 2}. If δ1, δ2 ∈ αi+̟OF

are such that δ21 = δ22 , then either δ1 = δ2 or δ1 = −δ2. However, if
δ1 = −δ2, then

|δ1 − δ2| = |2δ1| = |2||δ1| = 1.

This contradicts to the following estimate

|δ1 − δ2| = |(δ1 − αi)− (δ2 − αi)| ≤ max(|δ1 − αi|, |δ2 − αi|) ≤ q−1.

Hence we must have β1 = β2. This proves the injectivity of the map
(10.105). �
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Proof of Proposition 10.3. Clearly, we have

O∗
F =

∞⊔

k=0

̟kO×
F and (O∗

F )
2 =

∞⊔

k=0

̟2k(O×
F )

2.

For any k = 0, 1, · · · , the square map ϕ maps ̟kO×
F surjectively into

̟2k(O×
F )

2. For proving Proposition 10.3, it suffices to prove that for
any k = 0, 1, · · · , the set ̟kO×

F can be divided into two parts, such
that the square map ψ maps each part surjectively into ̟2k(O×

F )
2 and

the restriction of ψ on each part is F -bi-analytic.
We only need to prove this assertion for k = 0, since the other k ≥ 1

can be reduced to the case k = 0 by a suitable dilation. By Lemma
10.4, O×

F can be divided into two parts O×
F = V1⊔V2 , such that the two

maps ψ : Vi → (O×
F )

2, i = 1, 2 are both bijective. The analyticity of
the inverse maps (ψ|Vi)−1 follows from the Inverse Mapping Theorem
in non-Archimedean setting, see, e.g, Abhyankar [1, p. 87]. �

Corollary 10.5. For any integrable function f : OF → C, we have
∫

OF

f(z2)|z|dz = 2

∫

(O∗
F
)2
f(y)dy.(10.106)

Proof. Note that since F is non-dyadic, 2 ∈ O×
F . Using the notation in

Proposition 10.3 and Theorem 10.1
∫

OF

f(z2)|z|dz =
∫

O∗
F

f(ψ(z))|ψ′(z)|dz

=
2∑

i=1

∫

Ui

f(ψ(z))|ψ′(z)|dz = 2

∫

(O∗
F
)2
f(y)dy.

�

Proof of Proposition 4.5. The property (i) in Proposition 4.5 is trivial.
We proceed with the proof of properties (ii) and (iii).

For any x ∈ F ∗, define

f(z) =
1

|z|1/2χ(xz).

Then by substituting f into the identity (10.106), we get

θ(x) =

∫

OF

χ(xz2)dz =

∫

OF

f(z2)|2z|dz

= 2

∫

(O∗
F
)2
f(y)dy = 2

∫

(O∗
F
)2

1

|y|1/2χ(xy)dy.
(10.107)

Define

g(y) :=
2

|y|1/21(O∗
F
)2(y).(10.108)
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It is a standard fact that g ∈ L1(F, dx). The identity (10.107) can now
be rewritten as

θ(x) = ĝ(x).

Since we have

(O∗
F )

2 =

∞⊔

k=0

̟2k(O×
F )

2 =

∞⊔

k=0

⊔

a∈(C×
q )2

(̟2ka+̟2k+1OF ),

the function g defined by formula (10.108) can be written in the form

g(y) = 2

∞∑

k=0

qk
∑

a∈(C×
q )2

1̟2ka+̟2k+1OF
(y).

Consequently, we have

θ(x) = ĝ(x) = 2

∞∑

k=0

q−k−1
1̟−2k−1OF

(x)
∑

a∈(C×
q )2

χ(̟2kax).(10.109)

The property (ii) in Proposition 4.5. If ordF (x) = −2k0 with
k0 ≥ 1, then x = ̟−2k0u with u ∈ O×

F . Substituting x = ̟−2k0u into
(10.109) and using the assumption (2.28) on χ, we obtain

θ(x) = 2

∞∑

k=k0

q−k−1
∑

a∈(C×
q )2

χ(a̟2k−2k0u)

= 2
∞∑

k=k0

q−k−1 · q − 1

2
= q−k0 = |x|−1/2.

We thus complete the proof of the property (ii) in Proposition 4.5.

The property (iii) in Proposition 4.5. If ordF (x) = −2k0 − 1
with k0 ≥ 0, then x = ̟−2k0−1u with u ∈ O×

F . By substituting x =
̟−2k0−1u into (10.109) and using the fact that a̟2k−2k0−1u ∈ OF for
any a ∈ (C×

q )
2, k ≥ k0 + 1 and the assumption (2.28) on the choice of

χ, we obtain

θ(x) = 2

∞∑

k=k0

q−k−1
∑

a∈(C×
q )2

χ(a̟2k−2k0−1u)

= 2q−k0−1
∑

a∈(C×
q )2

χ(a̟−1u) + 2
∞∑

k=k0+1

q−k−1 · q − 1

2

= q−k0−1
(
2
∑

a∈(C×
q )2

χ(a̟−1u) + 1
)
.

(10.110)
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Now define a function z 7→ χ(z̟−1u) for z ∈ OF . Since this function
takes same value on every coset of ̟OF in OF , we define a non-trivial
additive character τ on Fq = OF/̟OF by the following formula:

τ(z +̟OF ) := χ(z̟−1u).

Thus we have

θ(x) = q−k0−1
(
2
∑

a∈(C×
q )2

τ(a +̟OF ) + 1
)

= q−k0−1
∑

z+̟OF∈Fq

τ(z2 +̟OF ).
(10.111)

Indeed, the second equality in (10.111) follows from the fact that for
every element in a ∈ (C×

q )
2, there exist exactly two distinct square

roots: z +̟OF and −z +̟OF , that is:

(z +̟OF )
2 ≡ (−z +̟OF )

2 ≡ z2 +̟OF ≡ a+̟OF (mod̟OF ).

Now by applying Theorem 10.2, we have

|θ(x)| = q−k0−
1
2 = |x|−1/2.

Now assume that v ∈ O×
F \ (O×

F )
2. Then by changing x to vx (equiva-

lently, changing u to v ·u) in (10.110) and applying (10.103), we obtain

θ(vx) = q−k0−1
(
2
∑

a∈(C×
q )2

χ(a̟−1vu) + 1
)

= q−k0−1
(
2
∑

a∈(C×
q )2

τ(v · a+̟OF ) + 1
)

= q−k0−1
∑

z+̟OF∈Fq

τ(v · z2 +̟OF ) = −θ(x).

We thus complete the proof of the property (iii) in Proposition 4.5. �

11. Appendix

11.1. Proof of Proposition 8.4.

Lemma 11.1. Let m ∈ N be a poisitive integer. Suppose that (σn)n∈N
is a sequence of probability measures on Fm, such that

lim
n→∞

σ̂n(x) = φ(x) for all x ∈ Fm.

Assume that the function φ is continuous at the origin 0 ∈ Fm. Then
there exists a probability measure σ on Fm, such that σ̂(x) = φ(x) and

σn =⇒ σ as n→ ∞.(11.112)
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Proof. First we show that under the hypothesis of Lemma (11.1), the
sequence of probability measures (σn)n∈N is tight. By using Fubini’s
Theorem and Lemma 3.3, for any k ∈ N, we have

−
∫

(̟kOF )m
(1− σ̂n(x))dvol(x)

=−
∫

(̟kOF )m
dvol(x)

∫

Fm

(1− χ(x · z))dσn(z)

=

∫

Fm

dσn(z)−
∫

(̟kOF )m
(1− χ(x · z))dvol(x)

=

∫

Fm

(1− 1(̟−kOF )m(z))dσn(z)

=σn({z ∈ Fm : ‖z‖ ≥ qk}).
By bounded convergence theorem, we have

−
∫

(̟kOF )m
(1− σ̂n(x))dvol(x)

n→∞−−−→ −
∫

(̟kOF )m
(1− φ(x))dvol(x).

By assumption, φ is continuous at 0. Since φ(0) = 1, for any ε > 0
there exists k large enough such that

−
∫

(̟kOF )m
(1− φ(x))dvol(x) ≤ ε/2.

Fix such an integer k ∈ N, and choose n0 ∈ N such that for any n ≥ n0,
we have

−
∫

(̟kOF )m
(1− σ̂n(x))dvol(x) ≤ ε.

That is, for any n ≥ n0, we have σn({z ∈ Fm : ‖z‖ ≥ qk}) ≤ ε. Note
that we may choose k′ large enough such that

sup
1≤n≤n0

σn({z ∈ Fm : ‖z‖ ≥ qk
′}) ≤ ε.

Hence by taking K = max(k, k′), we get

sup
n∈N

σn({z ∈ Fm : ‖z‖ ≥ qK}) ≤ ε.

This proves the tightness of the sequence (σn)n∈N.
Now, for proving (11.112), we only need to show that any weakly

convergent subsequence (σnk
)k∈N has the same limit point σ. Indeed,

assume that σnk
=⇒ σ. Then σ̂(x) = limk→∞ σ̂nk

(x) = φ(x), does
not depend on the choice of the subsequence. We now complete the
proof by using the fact that the measure is uniquely determined by its
characteristic function. �

Lemma 11.2. Let m ∈ N be a positive integer. Suppose that (σn)n∈N
and σ are probability measures on Fm. Then σn =⇒ σ as n → ∞ if
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and only if σ̂n(x) converges uniformly to σ̂(x) for x in any compact
subset of Fm.

Proof. Assume first that σ̂n(x) converges uniformly to σ̂(x) on any
compact subset of Fm. Then, by Lemma 11.1, σn =⇒ σ as n→ ∞.

Conversely, assume that σn =⇒ σ as n → ∞. For any x ∈ Fm,
the function z 7→ χ(x · z) is bounded and continuous, hence σ̂n(x) con-
verges to σ̂(x). By the Arzelà-Ascoli theorem, for proving the uniform
convergence of σ̂n on any compact subset, it suffices to prove the se-
quence of characteristic functions σ̂n is equicontinuous on any compact
subset of Fm. In fact, let us prove that these characteristic functions
are equicontinuous on the whole space Fm. For any ε > 0, since the
sequence (σn)n∈N of probability measures is tight, there exists k ∈ N
large enough, such that

sup
n∈N

σn({z ∈ Fm : ‖z‖ ≥ qk}) ≤ ε/2.

Now if y ∈ Fm is such that ‖y‖ ≤ q−k, then for any x ∈ Fm, we have

|σ̂n(x+ y)− σ̂n(x)| ≤
∫

Fm

|χ(y · z)− 1|dσn(z)

≤ 2σn({z ∈ Fm : ‖z‖ ≥ qk}) ≤ ε.

This proves the equicontinuity of the sequence (σ̂n)n∈N and completes
the proof of Lemma 11.2. �

Now we may prove Proposition 8.4 by using the following two points:

• characteristic functions µ̂n and µ̂ are all invariant under the
action of the group K(∞) = GL(∞,OF )×GL(∞,OF ).

• checking the convergence µn =⇒ µ is equivalent to checking for
all r ∈ N, the convergence (Cut∞r )∗µn =⇒ (Cut∞r )∗µ.

11.2. Proof of Lemma 10.2. Let a ∈ F×
q . First we claim that

∑

x∈Fq

τa(x
2) =

∑

x∈Fq

λ2(x)τa(x).(11.113)

Indeed,

∑

x∈Fq

λ2(x)τa(x) =
∑

x∈Fq

(∑

y∈Fq

1{y2=x}(y)− 1
)
τa(x)

=
∑

y∈Fq

∑

x∈Fq

1{y2=x}(y)τa(x)−
∑

y∈Fq

τa(x) =
∑

y∈Fq

τa(y
2).
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Consequently, by using the fact that λ2 is a multiplicative character of
F×
q , we have

∑

x∈Fq

τa(x
2) =

∑

x∈Fq

λ2(x)τ(ax) =
∑

x∈Fq

λ2(a
−1y)τ(y)

= λ2(a
−1)

∑

x∈Fq

λ2(y)τ(y) = λ2(a) ·
∑

x∈Fq

τ(x2).

Hence the identity (10.103) is proved.
Let us now show that |∑x∈Fq

τa(x
2)| = √

q. Indeed, by (11.113), we
have ∣∣∣

∑

x∈Fq

τa(x
2)
∣∣∣
2

=
∑

x,y∈Fq

λ2(x)λ2(y)τa(x)τa(y)

=
∑

x∈F×
q

∑

y∈Fq

λ2(x)λ2(y)τa(y − x).

For fixed x ∈ F×
q , by change of variables y = xz, we get

∣∣∣
∑

x∈Fq

τa(x
2)
∣∣∣
2

=
∑

x∈F×
q

∑

z∈Fq

λ2(x)λ2(xz)τa(xz − x)

=
∑

z∈Fq

∑

x∈F×
q

λ2(z)τa(xz − x)

= (q − 1) +
∑

z∈Fq\{1}

λ2(z)
∑

x∈F×
q

τa(x(z − 1))

= (q − 1)−
∑

z∈Fq\{1}

λ2(z) = q.

For concluding the proof, we need to show that
∑

x∈Fq

τ(x2) ∈ ̺q · R.(11.114)

However, if −1 /∈ (F×
q )

2, then λ2(a) = −1 and we have
∑

x∈Fq

τ(x2) =
∑

x∈Fq

τ(−x2) =
∑

x∈Fq

τ−1(x
2) = −

∑

x∈Fq

τ(x2).

It follows that
∑

x∈Fq
τ(x2) ∈ iR. Similar argument shows that if

−1 ∈ (F×
q )

2, then
∑

x∈Fq
τ(x2) ∈ R. By definition of ̺q and the cyclic

structure of the group F×
q , we get the desired relation (11.114).
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