What About Sequential Data Mining Techniques to Identify Linguistic Patterns for Stylistics ? - Archive ouverte HAL
Chapitre D'ouvrage Année : 2012

What About Sequential Data Mining Techniques to Identify Linguistic Patterns for Stylistics ?

Résumé

In this paper, we study the use of data mining techniques for stylistic analysis, from a linguistic point of view, by considering emerging sequential patterns. First, we show that mining sequential patterns of words with gap constraints gives new relevant linguistic patterns with respect to patterns built on state-of-the-art n-grams. Then, we investigate how sequential patterns of itemsets can provide more generic linguistic patterns. We validate our approach both from a quantitative and a linguistic point of view by conducting experiments on three corpora of various types of French texts (poetry, letters, and fiction, respectively). By considering more particularly poetic texts, we show that characteristic linguistic patterns can be identified using data mining techniques

Domaines

Linguistique
Fichier principal
Vignette du fichier
What_About_Sequential_Data_Mining_Techniques_to_Id_removed.pdf (250.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01481920 , version 1 (06-12-2021)

Identifiants

Citer

Solen Quiniou, Peggy Cellier, Thierry Charnois, Dominique Legallois. What About Sequential Data Mining Techniques to Identify Linguistic Patterns for Stylistics ?. Computational Linguistics and Intelligent Text Processing, 7181, Springer Berlin Heidelberg, pp.166-177, 2012, ⟨10.1007/978-3-642-28604-9_14⟩. ⟨hal-01481920⟩
77 Consultations
37 Téléchargements

Altmetric

Partager

More