Almost periodic solution in distribution for stochastic differential equations with Stepanov almost periodic coefficients
Résumé
This paper deals with the existence and uniqueness of (µ-pseudo) almost periodic mild solution to some evolution equations with Stepanov (µ-pseudo) almost periodic coefficients, in both determinist and stochastic cases. After revisiting some known concepts and properties of Stepanov (µ-pseudo) almost periodicity in complete metric space, we consider a semilinear stochastic evolution equation on a Hilbert separable space with Stepanov (µ-pseudo) almost periodic coefficients. We show existence and uniqueness of the mild solution which is (µ-pseudo) almost periodic in 2-distribution. We also generalize a result by Andres and Pennequin, according to which there is no purely Stepanov almost periodic solutions to differential equations with Stepanov almost periodic coefficients.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...