Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation
Hamish Gordon
(1)
,
Kamalika Sengupta
(2)
,
Alexandru Rap
(2)
,
Jonathan Duplissy
(3)
,
Carla Frege
(4)
,
Cristina Williamson
(5, 6, 7)
,
Martin Heinritzi
(5)
,
Martin Simon
(5)
,
Chao Yan
(8)
,
Joao Almeida
(1, 5)
,
Jasmin Tröstl
(4)
,
Tuomo Nieminen
(3, 9)
,
Ismael K. Ortega
(10, 11)
,
Robert Wagner
(8)
,
Eimear M. Dunne
(2, 12)
,
Alexey Adamov
(8)
,
Antonio Amorim
(13)
,
Anne-Kathrin Bernhammer
(14, 15)
,
Federico Bianchi
(4, 8)
,
Martin Breitenlechner
(14)
,
Sophia Brilke
(5)
,
Xuemeng Chen
(8)
,
Jill S. Craven
(16)
,
Antonio Dias
(1)
,
Sébastian Ehrhart
(1, 5)
,
Lukas Fischer
(14)
,
Rchard C. Flagan
(16)
,
Alessandro Franchin
(8)
,
Claudia Fuchs
(4)
,
Roberto Guida
(1)
,
Jani Hakala
(8)
,
Christopher R. Hoyle
(4, 17)
,
Tuija Jokinen
(8)
,
Heikki Junninen
(8)
,
Juha Kangasluoma
(8)
,
Jaeseok Kim
(18, 9)
,
Jasper Kirkby
(1, 5)
,
Manuel Krapf
(4)
,
Andreas Kürten
(5)
,
Ari Laaksonen
(9, 12)
,
Katrianne Lehtipalo
(4, 8)
,
Vladimir Makhmutov
(19)
,
Serge Mathot
(1)
,
Ugo Molteni
(4)
,
Sarah A. Monks
(6, 7)
,
Antti Onnela
(1)
,
Otso Peräkylä
(8)
,
Felix Piel
(5)
,
Tuukka Petäjä
(8)
,
Arnaud P. Praplan
(8)
,
Kirsty J. Pringle
(2)
,
Nigel A.D. Richards
(2, 20)
,
Matti P. Rissanen
(8)
,
Linda Rondo
(5)
,
Nina Sarnela
(8)
,
Siegfried Schobesberger
(8)
,
Catherine E. Scott
(2)
,
John H. Seinfeld
(16)
,
Sangeeta Sharma
(20)
,
Mikko Sipilä
(3, 8)
,
Gerhard Steiner
(8, 14, 21)
,
Yuri Stozhkov
(19)
,
Frank Stratmann
(21)
,
Antonio Tomé
(13)
,
Annele Virtanen
(9)
,
Alexander Lucas Vogel
(1)
,
Andrea C. Wagner
(5)
,
Paul E. Wagner
(21)
,
Ernest Weingartner
(4)
,
Daniela Wimmer
(8)
,
Paul M. Winkler
(21)
,
Penglin Ye
(22)
,
Xuan Zhang
(3, 8)
,
Armin Hansel
(14, 15)
,
Josef Dommen
(4)
,
Neil M. Donahue
(22)
,
Douglas R. Worsnop
(3, 9)
,
Urs Baltensperger
(4)
,
Markku Kulmala
(3, 8)
,
Joachim Curtius
(5)
,
Kenneth S. Carslaw
(1)
1
CERN [Genève]
2 University of Leeds
3 HIP - Helsinki Institute of Physics
4 PSI - Paul Scherrer Institute
5 IAU - Institute for Atmospheric and Environmental Sciences [Frankfurt/Main]
6 CIRES - Cooperative Institute for Research in Environmental Sciences
7 NOAA - National Oceanic and Atmospheric Administration
8 Helsingin yliopisto = Helsingfors universitet = University of Helsinki
9 University of Eastern Finland
10 ONERA - The French Aerospace Lab [Palaiseau]
11 PhLAM - Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523
12 FMI - Finnish Meteorological Institute
13 UBI - University of Beira Interior [Portugal]
14 Institut für Ionenphysik und Angewandte Physik - Institute for Ion Physics and Applied Physics [Innsbruck]
15 Ionicon Analytik GmbH
16 CALTECH - California Institute of Technology
17 Institute for Snow and Avalanche Research SLF
18 KOPRI - Korea Polar Research Institute
19 Solar and Cosmic Ray Research Laboratory [Moscow]
20 NCEO - NERC National Centre for Earth Observation
21 Faculty of Physics [Vienna]
22 CAPS - Center for Atmospheric Particle Studies [Pittsburgh]
2 University of Leeds
3 HIP - Helsinki Institute of Physics
4 PSI - Paul Scherrer Institute
5 IAU - Institute for Atmospheric and Environmental Sciences [Frankfurt/Main]
6 CIRES - Cooperative Institute for Research in Environmental Sciences
7 NOAA - National Oceanic and Atmospheric Administration
8 Helsingin yliopisto = Helsingfors universitet = University of Helsinki
9 University of Eastern Finland
10 ONERA - The French Aerospace Lab [Palaiseau]
11 PhLAM - Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523
12 FMI - Finnish Meteorological Institute
13 UBI - University of Beira Interior [Portugal]
14 Institut für Ionenphysik und Angewandte Physik - Institute for Ion Physics and Applied Physics [Innsbruck]
15 Ionicon Analytik GmbH
16 CALTECH - California Institute of Technology
17 Institute for Snow and Avalanche Research SLF
18 KOPRI - Korea Polar Research Institute
19 Solar and Cosmic Ray Research Laboratory [Moscow]
20 NCEO - NERC National Centre for Earth Observation
21 Faculty of Physics [Vienna]
22 CAPS - Center for Atmospheric Particle Studies [Pittsburgh]
Antonio Amorim
- Function : Author
- PersonId : 756885
- ORCID : 0000-0003-0638-2321
Tuija Jokinen
- Function : Author
- PersonId : 779621
- ORCID : 0000-0002-1280-1396
Ari Laaksonen
- Function : Author
- PersonId : 1000406
Tuukka Petäjä
- Function : Author
- PersonId : 779400
- ORCID : 0000-0002-1881-9044
Nigel A.D. Richards
- Function : Author
Markku Kulmala
- Function : Author
- PersonId : 763836
- ORCID : 0000-0003-3464-7825
- IdRef : 15928953X
Joachim Curtius
- Function : Author
- PersonId : 775517
- ORCID : 0000-0003-3153-4630
Abstract
The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under Q:11 pristine preindustrial conditions. Measurements in the European Organisation for Nuclear Research (CERN) CLOUD chamber show that particle formation in atmospheric conditions can occur solely from Q:12 biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nucleus (CCN) concentrations and aerosol cloud radiative forcing over the industrial period.
Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore, the cooling forcing of anthropogenic aerosols is reduced. Q:13 The mechanism increases CCN concentrations by 20–100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m−² (27%) to −0.60 W m−².
Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.
Origin : Publisher files allowed on an open archive