Low-Rank Regression with Tensor Responses - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Low-Rank Regression with Tensor Responses

Résumé

This paper proposes an efficient algorithm (HOLRR) to handle regression tasks where the outputs have a tensor structure. We formulate the regression problem as the minimization of a least square criterion under a multilinear rank constraint, a difficult non convex problem. HOLRR computes efficiently an approximate solution of this problem, with solid theoretical guarantees. A kernel extension is also presented. Experiments on synthetic and real data show that HOLRR computes accurate solutions while being computationally very competitive.
Fichier principal
Vignette du fichier
6302-low-rank-regression-with-tensor-responses.pdf (1.59 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01471279 , version 1 (19-02-2017)

Identifiants

  • HAL Id : hal-01471279 , version 1

Citer

Guillaume Rabusseau, Hachem Kadri. Low-Rank Regression with Tensor Responses. NIPS, Dec 2016, Barcelone, Spain. ⟨hal-01471279⟩
348 Consultations
217 Téléchargements

Partager

More