Fano's inequality for random variables - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Fano's inequality for random variables

Résumé

We extend Fano's inequality, which controls the average probability of events in terms of the average of some f--divergences, to work with arbitrary events (not necessarily forming a partition) and even with arbitrary [0,1]--valued random variables, possibly in continuously infinite number. We provide two applications of these extensions, in which the consideration of random variables is particularly handy: we offer new and elegant proofs for existing lower bounds, on Bayesian posterior concentration (minimax or distribution-dependent) rates and on the regret in non-stochastic sequential learning.
Fichier principal
Vignette du fichier
Fano-Statistical-Science--R1.pdf (484.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01470862 , version 1 (17-02-2017)
hal-01470862 , version 2 (18-09-2018)
hal-01470862 , version 3 (04-06-2019)

Identifiants

Citer

Sebastien Gerchinovitz, Pierre Ménard, Gilles Stoltz. Fano's inequality for random variables. 2018. ⟨hal-01470862v2⟩

Collections

HEC
809 Consultations
3065 Téléchargements

Altmetric

Partager

More