Fast Nonnegative Matrix Factorization and Completion Using Nesterov Iterations - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Fast Nonnegative Matrix Factorization and Completion Using Nesterov Iterations

Résumé

In this paper, we aim to extend Nonnegative Matrix Factorization with Nesterov iterations (Ne-NMF)—well-suited to large-scale problems—to the situation when some entries are missing in the observed matrix. In particular, we investigate the Weighted and Expectation-Maximization strategies which both provide a way to process missing data. We derive their associated extensions named W-NeNMF and EM-W-NeNMF, respectively. The proposed approaches are then tested on simulated nonnegative low-rank matrix completion problems where the EM-W-NeNMF is shown to outperform state-of-the-art methods and the W-NeNMF technique.
Fichier principal
Vignette du fichier
cdmpgdgr_LVA17.pdf (811.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01469366 , version 1 (03-12-2018)

Identifiants

Citer

Clément Dorffer, Matthieu Puigt, Gilles Delmaire, Gilles Roussel. Fast Nonnegative Matrix Factorization and Completion Using Nesterov Iterations. 13th International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA 2017), Feb 2017, Grenoble, France. pp.26-35, ⟨10.1007/978-3-319-53547-0_3⟩. ⟨hal-01469366⟩
91 Consultations
409 Téléchargements

Altmetric

Partager

More