Compressed sensing in Hilbert spaces - Archive ouverte HAL Access content directly
Book Sections Year : 2018

Compressed sensing in Hilbert spaces

Abstract

In many linear inverse problems, we want to estimate an unknown vector belonging to a high-dimensional (or infinite-dimensional) space from few linear measurements. To overcome the ill-posed nature of such problems, we use a low-dimension assumption on the unknown vector: it belongs to a low-dimensional model set. The question of whether it is possible to recover such an unknown vector from few measurements then arises. If the answer is yes, it is also important to be able to describe a way to perform such a recovery. We describe a general framework where appropriately chosen random measurements guarantee that recovery is possible. We further describe a way to study the performance of recovery methods that consist in the minimization of a regularization function under a data-fit constraint.
Fichier principal
Vignette du fichier
chapter.pdf (1 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01469134 , version 1 (16-02-2017)
hal-01469134 , version 2 (17-07-2017)

Licence

Copyright

Identifiers

Cite

Yann Traonmilin, Gilles Puy, Rémi Gribonval, Mike E. Davies. Compressed sensing in Hilbert spaces. Holger Boche; Giuseppe Caire; Robert Calderbank; Maximilian März; Gitta Kutyniok; Rudolf Mathar. Compressed Sensing and its Applications -- Second International MATHEON Conference 2015, Birkhaüser Basel, pp.359--384, 2018, Series: Applied and Numerical Harmonic Analysis, 978-3-319-69801-4. ⟨10.1007/978-3-319-69802-1_12⟩. ⟨hal-01469134v2⟩
816 View
708 Download

Altmetric

Share

Gmail Facebook X LinkedIn More